Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 141(2): 253-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24306106

RESUMEN

Drosophila type II neuroblasts (NBs), like mammalian neural stem cells, deposit neurons through intermediate neural progenitors (INPs) that can each produce a series of neurons. Both type II NBs and INPs exhibit age-dependent expression of various transcription factors, potentially specifying an array of diverse neurons by combinatorial temporal patterning. Not knowing which mature neurons are made by specific INPs, however, conceals the actual variety of neuron types and limits further molecular studies. Here we mapped neurons derived from specific type II NB lineages and found that sibling INPs produced a morphologically similar but temporally regulated series of distinct neuron types. This suggests a common fate diversification program operating within each INP that is modulated by NB age to generate slightly different sets of diverse neurons based on the INP birth order. Analogous mechanisms might underlie the expansion of neuron diversity via INPs in mammalian brain.


Asunto(s)
Drosophila/citología , Drosophila/crecimiento & desarrollo , Células-Madre Neurales/citología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Linaje de la Célula , Drosophila/genética , Modelos Neurológicos , Células-Madre Neurales/clasificación , Células-Madre Neurales/metabolismo , Neurogénesis
2.
J Neurosci ; 29(6): 1904-14, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19211897

RESUMEN

Drosophila Down syndrome cell adhesion molecule (Dscam) can be variably spliced to encode 152,064 distinct single-pass transmembrane proteins. In addition to 19,008 possible ectodomains and two alternative transmembrane segments, it may carry endodomains containing or lacking exons 19 and 23. Here, we determine the role of Dscam endodomain diversity in neural development. Dscam with full-length endodomain is largely restricted to embryogenesis. In contrast, most Dscams lack exons 19 and 23 at postembryonic stages. As implicated from the expression patterns, removal of Dscam exon 19-containing variants disrupts wiring of embryonic neurons while silencing of Dscam transcripts lacking exon 19 or exon 23 effectively blocks postembryonic neuronal morphogenesis. Furthermore, compared with exon 19-containing Dscam, transgenic Dscam without exon 19 is more efficiently targeted to neurites and more potently suppresses axon bifurcation in Dscam mutant neurons. In sum, Dscam with or without exon 19 in its endodomain is used to govern different stage-specific neuronal morphogenetic processes, possibly due to differences in protein targeting.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Morfogénesis/fisiología , Neuronas/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular , Drosophila , Proteínas de Drosophila/genética , Marcación de Gen , Datos de Secuencia Molecular , Morfogénesis/genética , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/química , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología
3.
Neuron ; 43(5): 663-72, 2004 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-15339648

RESUMEN

Besides 19,008 possible ectodomains, Drosophila Dscam contains two alternative transmembrane/juxtamembrane segments, respectively, derived from exon 17.1 and exon 17.2. We wondered whether specific Dscam isoforms mediate formation and segregation of axonal branches in the Drosophila mushroom bodies (MBs). Removal of various subsets of the 12 exon 4s does not affect MB neuronal morphogenesis, while expression of a Dscam transgene only partially rescues Dscam mutant phenotypes. Interestingly, differential rescuing effects are observed between two Dscam transgenes that each possesses one of the two possible exon 17s. Axon bifurcation/segregation abnormalities are better rescued by the exon 17.2-containing transgene, but coexpression of both transgenes is required for rescuing mutant viability. Meanwhile, exon 17.1 targets ectopically expressed Dscam-GFP to dendrites while Dscam[exon 17.2]-GFP is enriched in axons; only Dscam[exon 17.2] affects MB axons. These results suggest that exon 17.1 is minimally involved in axonal morphogenesis and that morphogenesis of MB axons probably involves multiple distinct exon 17.2-containing Dscam isoforms.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Empalme Alternativo/genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Moléculas de Adhesión Celular , Diferenciación Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Exones/genética , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Larva , Morfogénesis/genética , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/embriología , Mutación/genética , Neuronas/citología , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína/genética , Proteínas/genética , Transgenes/genética
4.
J Neurosci ; 27(25): 6723-8, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17581959

RESUMEN

Drosophila Dscam isoforms are derived from two alternative transmembrane/juxtamembrane domains (TMs) in addition to thousands of ectodomain variants. Using a microRNA-based RNA interference technology, we selectively knocked down different subsets of Dscams containing either the exon 17.1- or exon 17.2-encoding TM. Eliminating Dscam[TM1] reduced Dscam expression but minimally affected postembryonic axonal morphogenesis. In contrast, depleting Dscam[TM2] blocked axon arborization. Further removal of Dscam[TM1] enhanced the loss-of-Dscam[TM2] axonal phenotypes. However, Dscam[TM1] primarily regulates dendritic development, as evidenced by the observations that removing Dscam[TM1] alone impeded elaboration of dendrites and that transgenic Dscam[TM1], but not Dscam[TM2], effectively rescued Dscam mutant dendritic phenotypes in mosaic organisms. These distinct Dscam functions can be attributed to the juxtamembrane regions of TMs that govern dendritic versus axonal targeting of Dscam as well. Together, we suggest that specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Proteínas de Drosophila/fisiología , Variación Genética/fisiología , Proteínas de la Membrana/fisiología , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular , Drosophila , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Morfogénesis/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
5.
J Comp Neurol ; 521(12): 2645-Spc1, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23696496

RESUMEN

The Drosophila central brain develops from a fixed number of neuroblasts. Each neuroblast makes a clone of neurons that exhibit common trajectories. Here we identified 15 distinct clones that carry larval-born neurons innervating the Drosophila central complex (CX), which consists of four midline structures including the protocerebral bridge (PB), fan-shaped body (FB), ellipsoid body (EB), and noduli (NO). Clonal analysis revealed that the small-field CX neurons, which establish intricate projections across different CX substructures, exist in four isomorphic groups that respectively derive from four complex posterior asense-negative lineages. In terms of the region-characteristic large-field CX neurons, we found that two lineages make PB neurons, 10 lineages produce FB neurons, three lineages generate EB neurons, and two lineages yield NO neurons. The diverse FB developmental origins reflect the discrete input pathways for different FB subcompartments. Clonal analysis enlightens both development and anatomy of the insect locomotor control center.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Locomoción/fisiología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Antígenos CD8/metabolismo , Linaje de la Célula/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Red Nerviosa/metabolismo , Neuronas/citología
6.
Curr Biol ; 23(8): 633-43, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23541733

RESUMEN

BACKGROUND: The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. RESULTS: By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. CONCLUSIONS: These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Linaje de la Célula , Células Clonales/citología , Células Clonales/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Microscopía Confocal , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurópilo/citología , Neurópilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA