Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 189: 106692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773708

RESUMEN

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Nitrilos/farmacología , Antagonistas de Receptores Androgénicos , Andrógenos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/farmacología , Resistencia a Antineoplásicos , Ubiquitina-Proteína Ligasas
2.
Nature ; 500(7464): 598-602, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23945587

RESUMEN

Although recent studies have indicated roles of long non-coding RNAs (lncRNAs) in physiological aspects of cell-type determination and tissue homeostasis, their potential involvement in regulated gene transcription programs remains rather poorly understood. The androgen receptor regulates a large repertoire of genes central to the identity and behaviour of prostate cancer cells, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy. Here we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1, bind successively to the androgen receptor and strongly enhance both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated androgen receptor on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the androgen receptor amino terminus that is methylated by DOT1L. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited pygopus 2 PHD domain enhances selective looping of androgen-receptor-bound enhancers to target gene promoters in these cells. In 'resistant' prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full-length androgen receptor, causing ligand-independent activation of the androgen receptor transcriptional program and cell proliferation. Conditionally expressed short hairpin RNA targeting these lncRNAs in castration-resistant prostate cancer cell lines strongly suppressed tumour xenograft growth in vivo. Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.


Asunto(s)
ARN Largo no Codificante/genética , Receptores Androgénicos/metabolismo , Activación Transcripcional/genética , Regulación hacia Arriba/genética , Animales , Castración , Línea Celular Tumoral , Proliferación Celular , Elementos de Facilitación Genéticos/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(25): 9235-40, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24928520

RESUMEN

Understanding the mechanisms by which compounds discovered using cell-based phenotypic screening strategies might exert their effects would be highly augmented by new approaches exploring their potential interactions with the genome. For example, altered androgen receptor (AR) transcriptional programs, including castration resistance and subsequent chromosomal translocations, play key roles in prostate cancer pathological progression, making the quest for identification of new therapeutic agents and an understanding of their actions a continued priority. Here we report an approach that has permitted us to uncover the sites and mechanisms of action of a drug, referred to as "SD70," initially identified by phenotypic screening for inhibitors of ligand and genotoxic stress-induced translocations in prostate cancer cells. Based on synthesis of a derivatized form of SD70 that permits its application for a ChIP-sequencing-like approach, referred to as "Chem-seq," we were next able to efficiently map the genome-wide binding locations of this small molecule, revealing that it largely colocalized with AR on regulatory enhancers. Based on these observations, we performed the appropriate global analyses to ascertain that SD70 inhibits the androgen-dependent AR program, and prostate cancer cell growth, acting, at least in part, by functionally inhibiting the Jumonji domain-containing demethylase, KDM4C. Global location of candidate drugs represents a powerful strategy for new drug development by mapping genome-wide location of small molecules, a powerful adjunct to contemporary drug development strategies.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos , Línea Celular Tumoral , Análisis Mutacional de ADN/métodos , Humanos , Masculino , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Translocación Genética
4.
BMC Med ; 13: 206, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26329698

RESUMEN

Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Progresión de la Enfermedad , Humanos , Masculino
5.
Oncogene ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877132

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.

6.
Oncogene ; 42(9): 693-707, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596844

RESUMEN

Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Nitrilos/uso terapéutico , Antagonistas de Receptores Androgénicos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas
7.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147019

RESUMEN

BACKGROUND: Emerging data suggest that patients with enzalutamide-treated prostate cancer with increased programmed death-ligand 1 (PD-L1) expression may benefit from anti-PD-L1 treatment. Unfortunately, the Phase III IMbassador250 clinical trial revealed that the combination of atezolizumab (a PD-L1 inhibitor) and enzalutamide failed to extend overall survival in patients with castration-resistant prostate cancer (CRPC). However, the mechanisms underlying treatment failure remain unknown. METHODS: Human CRPC C4-2B cells and murine Myc-CaP cells were chronically exposed to increasing concentrations of enzalutamide and the cells resistant to enzalutamide were referred to as C4-2B MDVR and Myc-CaP MDVR, respectively. The mechanisms of action in drug-resistant prostate cancer cells were determined using RNA sequencing analyses, RNA interference, real-time PCR, western blotting, and co-culturing technologies. Myc-CaP and Myc-CaP MDVR tumors were established in syngeneic FVB mice, and tumor-infiltrating leukocytes were isolated after enzalutamide treatment. The stained immune cells were determined by flow cytometry, and the data were analyzed using FlowJo. RESULTS: Immune-related signaling pathways (interferon alpha/gamma response, inflammatory response, and cell chemotaxis) were suppressed in human enzalutamide-resistant prostate cancer cells. PD-L1 was overexpressed and negatively regulated by androgen receptor signaling in resistant cells and patient with CRPC cohorts. Enzalutamide treatment decreased CD8+ T-cell numbers but increased monocytic myeloid-derived suppressor cell (M-MDSC) populations and PD-L1 expression within murine Myc-CaP tumors. Similarly, chemotaxis and immune response-regulating signaling pathways were suppressed, and PD-L1 expression was also increased using enzalutamide-resistant Myc-CaP MDVR cells. Notably, MDSC populations were significantly increased in Myc-CaP MDVR orthotopic tumors compared with those in Myc-CaP parental tumors. Co-culturing bone marrow cells with Myc-CaP MDVR cells significantly promoted MDSC differentiation and shifted towards M2 macrophage skewing. CONCLUSIONS: Our study suggests that immunosuppressive signaling can be promoted directly by enzalutamide-resistant prostate cancer cells and may be a potential means by which the efficacy of immune checkpoint inhibitors in enzalutamide-resistant prostate cancer is diminished.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Animales , Humanos , Masculino , Ratones , Resistencia a Antineoplásicos , Inmunosupresores/uso terapéutico , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Microambiente Tumoral
8.
Int J Cancer ; 130(11): 2693-702, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21792888

RESUMEN

There have been recent improvements in the treatment for metastatic renal cell carcinoma (RCC) with receptor tyrosine kinase (RTK) inhibitors being one of newer treatment options. We hypothesized that simultaneous targeting of Src kinase and the RTK may have synergistic effects to further improve therapies on metastatic RCC. The effects of Src kinase inhibitor saracatinib and multiple RTK inhibitor sunitinib on RCC cell line (ACHN) and Caki-1 were studied. Saracatinib alone or in combination with sunitinib inhibited the migration of ACHN and Caki-1 cells in vitro. Activation of migration related components FAK, P130Cas and Paxillin were blocked by saracatinib at 0.05- to 3-µM concentrations. Combined treatment resulted in improved growth inhibition, greater loss of the S phase cell population and decreased clonogenic colony formation compared to sunitinib alone in the metastatic Caki-1 line. Molecular studies in Caki-1 showed that saracatinib alone and in combination with sunitinib inhibited phosphorylation of the cell progression regulator c-Myc in a dose-dependent manner. Sunitinib alone or in combination suppressed cyclin-D1 expression with the combination showing greater dose-dependent effect. Sunitinib inhibited vascular endothelial growth factor (VEGF) secretion through the inhibition of STAT3 signaling and VEGF biosynthesis. HIF1-α expression in normoxic and hypoxic conditions in Caki-1 cells was inhibited by either saracatinib or sunitinib when administered alone, however, a greater reduction occurred when these compounds were given in combination. Targeting Src kinase and RTK simultaneously with saracatinib and sunitinib resulted in 70-80% blockade of RCC cell migration, synergistic inhibition of cell growth and reduction of acquired drug resistance in Caki-1 cells. The results show promise for combination targeted therapy of RCC.


Asunto(s)
Benzodioxoles/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Indoles/farmacología , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Quinazolinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Familia-src Quinasas/antagonistas & inhibidores , Carcinoma de Células Renales/patología , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias Renales/patología , Sunitinib , Factor A de Crecimiento Endotelial Vascular/biosíntesis
9.
Biomedicines ; 10(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892678

RESUMEN

Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a "cold" tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.

10.
Mol Cancer Ther ; 21(10): 1594-1607, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35930737

RESUMEN

The next-generation antiandrogen drugs such as enzalutamide and abiraterone extend survival times and improve quality of life in patients with advanced prostate cancer. However, resistance to both drugs occurs frequently through mechanisms that are incompletely understood. Wnt signaling, particularly through Wnt5a, plays vital roles in promoting prostate cancer progression and induction of resistance to enzalutamide and abiraterone. Development of novel strategies targeting Wnt5a to overcome resistance is an urgent need. In this study, we demonstrated that Wnt5a/FZD2-mediated noncanonical Wnt pathway is overexpressed in enzalutamide-resistant prostate cancer. In patient databases, both the levels of Wnt5a and FZD2 expression are upregulated upon the development of enzalutamide resistance and correlate with higher Gleason score, biochemical recurrence, and metastatic status, and with shortened disease-free survival duration. Blocking Wnt5a/FZD2 signal transduction not only diminished the activation of noncanonical Wnt signaling pathway, but also suppressed the constitutively activated androgen receptor (AR) and AR variants. Furthermore, we developed a novel bioengineered BERA-Wnt5a siRNA construct and demonstrated that inhibition of Wnt5a expression by the BERA-Wnt5a siRNA significantly suppressed tumor growth and enhanced enzalutamide treatment in vivo. These results indicate that Wnt5a/FZD2 signal pathway plays a critical role in promoting enzalutamide resistance, and targeting this pathway by BERA-Wnt5a siRNA can be developed as a potential therapy to treat advanced prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Benzamidas , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/uso terapéutico , Humanos , Masculino , Nitrilos/uso terapéutico , Feniltiohidantoína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , ARN Interferente Pequeño/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
11.
Commun Med (Lond) ; 2: 118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159187

RESUMEN

Background: Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods: We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results: We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or intermediate stage of neuroendocrine differentiation. These NLS genes positively correlate with conventional neuroendocrine markers such as chromogranin and synaptophysin, and negatively correlate with AR and AR target genes in advanced prostate cancer. Differentially expressed NLS genes stratify small-cell NEPC from prostate adenocarcinoma, which are closely associated with clinicopathologic features such as Gleason Score and metastasis status. Higher ARGHEF2, LHX2, and EPHB2 levels among the 95 NLS genes correlate with a shortened survival time in NEPC patients. Furthermore, downregulation of ARHGEF2 gene expression suppresses cell viability and markers of neuroendocrine differentiation in enzalutamide-resistant and neuroendocrine cells. Conclusions: The 95 neural lineage gene signatures capture an early molecular shift toward neuroendocrine differentiation, which could stratify advanced prostate cancer patients to optimize clinical treatment and serve as a source of potential therapeutic targets in advanced prostate cancer.

12.
Oncogene ; 40(35): 5379-5392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272475

RESUMEN

Targeting androgen signaling with the second-generation anti-androgen drugs, such as enzalutamide (Enza), abiraterone (Abi), apalutamide (Apal), and darolutamide (Daro), is the mainstay for the treatment of castration-resistant prostate cancer (CRPC). While these treatments are effective initially, resistance occurs frequently. Continued expression of androgen receptor (AR) and its variants such as AR-V7 despite AR-targeted therapy contributes to treatment resistance and cancer progression in advanced CRPC patients. This highlights the need for new strategies blocking continued AR signaling. Here, we identify a novel AR/AR-V7 degrader (ARVib) and found that ARVib effectively degrades AR/AR-V7 protein and attenuates AR/AR-V7 downstream target gene expression in prostate cancer cells. Mechanistically, ARVib degrades AR/AR-V7 protein through the ubiquitin-proteasome pathway mediated by HSP70/STUB1 machinery modulation. ARVib suppresses HSP70 expression and promotes STUB1 nuclear translocation, where STUB1 binds to AR/AR-V7 and promotes its ubiquitination and degradation. ARVib significantly inhibits resistant prostate tumor growth and improves enzalutamide treatment in vitro and in vivo. These data suggest that ARVib has potential for development as an AR/AR-V7 degrader to treat resistant CRPC.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Transducción de Señal
13.
Mol Cancer Ther ; 19(8): 1708-1718, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430485

RESUMEN

The next-generation antiandrogen drugs, XTANDI (enzalutamide), ZYTIGA (abiraterone acetate), ERLEADA (apalutamide) and NUBEQA (darolutamide) extend survival times and improve quality of life in patients with advanced prostate cancer. Despite these advances, resistance occurs frequently and there is currently no definitive cure for castration-resistant prostate cancer. Our previous studies identified that similar mechanisms of resistance to enzalutamide or abiraterone occur following treatment and cross-resistance exists between these therapies in advanced prostate cancer. Here, we show that enzalutamide- and abiraterone-resistant prostate cancer cells are further cross-resistant to apalutamide and darolutamide. Mechanistically, we have determined that the AKR1C3/AR-V7 axis confers this cross-resistance. Knockdown of AR-V7 in enzalutamide-resistant cells resensitize cells to apalutamide and darolutamide treatment. Furthermore, targeting AKR1C3 resensitizes resistant cells to apalutamide and darolutamide treatment through AR-V7 inhibition. Chronic apalutamide treatment in C4-2B cells activates the steroid hormone biosynthesis pathway and increases AKR1C3 expression, which confers resistance to enzalutamide, abiraterone, and darolutamide. In conclusion, our results suggest that apalutamide and darolutamide share similar resistant mechanisms with enzalutamide and abiraterone. The AKR1C3/AR-V7 complex confers cross-resistance to second-generation androgen receptor-targeted therapies in advanced prostate cancer.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Empalme Alternativo , Antagonistas de Receptores Androgénicos/farmacología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/química , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Antagonistas de Receptores Androgénicos/clasificación , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Células Tumorales Cultivadas
14.
Clin Cancer Res ; 26(22): 6064-6074, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32928794

RESUMEN

PURPOSE: Most patients with prostate cancer receiving enzalutamide or abiraterone develop resistance. Clinical evidence indicates that serum levels of dehydroepiandrosterone sulfate (DHEAS) and biologically active DHEA remain in the high range despite antiandrogen treatment. The conversion of DHEAS into DHEA by steroid sulfatase (STS) may contribute to sustained intracrine androgen synthesis. Here, we determine the contribution of STS to treatment resistance and explore the potential of targeting STS to overcome resistance in prostate cancer. EXPERIMENTAL DESIGN: STS expression was examined in patients and cell lines. In vitro, STS activity and expression were modulated using STS-specific siRNA or novel STS inhibitors (STSi). Cell growth, colony formation, androgen production, and gene expression were examined. RNA-sequencing analysis was conducted on VCaP cells treated with STSi. Mice were treated with STSis with or without enzalutamide to determine their effects in vivo. RESULTS: STS is overexpressed in patients with castration-resistant prostate cancer (CRPC) and resistant cells. STS overexpression increases intracrine androgen synthesis, cell proliferation, and confers resistance to enzalutamide and abiraterone. Inhibition of STS using siRNA suppresses prostate cancer cell growth. Targeting STS activity using STSi inhibits STS activity, suppresses androgen receptor transcriptional activity, and reduces the growth of resistant C4-2B and VCaP prostate cancer cells. STSis significantly suppress resistant VCaP tumor growth, decrease serum PSA levels, and enhance enzalutamide treatment in vitro and in vivo. CONCLUSIONS: These studies suggest that STS drives intracrine androgen synthesis and prostate cancer proliferation. Targeting STS represents a therapeutic strategy to treat CRPC and improve second-generation antiandrogen therapy.


Asunto(s)
Andrógenos/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Esteril-Sulfatasa/genética , Antagonistas de Andrógenos/farmacología , Andrógenos/genética , Androstenos/efectos adversos , Androstenos/farmacología , Benzamidas/efectos adversos , Benzamidas/farmacología , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Deshidroepiandrosterona/metabolismo , Sulfato de Deshidroepiandrosterona/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Estadificación de Neoplasias , Nitrilos/efectos adversos , Nitrilos/farmacología , Feniltiohidantoína/efectos adversos , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , RNA-Seq
15.
Mol Cancer Ther ; 18(10): 1875-1886, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308078

RESUMEN

The mechanisms resulting in resistance to next-generation antiandrogens in castration-resistant prostate cancer are incompletely understood. Numerous studies have determined that constitutively active androgen receptor (AR) signaling or full-length AR bypass mechanisms may contribute to the resistance. Previous studies established that AKR1C3 and AR-V7 play important roles in enzalutamide and abiraterone resistance. In the present study, we found that AKR1C3 increases AR-V7 expression in resistant prostate cancer cells through enhancing protein stability via activation of the ubiquitin-mediated proteasome pathway. AKR1C3 reprograms AR signaling in enzalutamide-resistant prostate cancer cells. In addition, bioinformatical analysis of indomethacin-treated resistant cells revealed that indomethacin significantly activates the unfolded protein response, p53, and apoptosis pathways, and suppresses cell-cycle, Myc, and AR/ARV7 pathways. Targeting AKR1C3 with indomethacin significantly decreases AR/AR-V7 protein expression in vitro and in vivo through activation of the ubiquitin-mediated proteasome pathway. Our results suggest that the AKR1C3/AR-V7 complex collaboratively confers resistance to AR-targeted therapies in advanced prostate cancer.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Empalme Alternativo/genética , Resistencia a Antineoplásicos , Terapia Molecular Dirigida , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Administración Oral , Animales , Benzamidas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Indometacina/administración & dosificación , Indometacina/farmacología , Masculino , Ratones SCID , Estadificación de Neoplasias , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esteroides/biosíntesis
16.
Mol Cancer Ther ; 18(10): 1811-1821, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31341032

RESUMEN

Hormone therapy is currently the mainstay in the management of locally advanced and metastatic prostate cancer. Degarelix (Firmagon), a gonadotropin-releasing hormone (GnRH) receptor antagonist differs from luteinizing hormone-releasing hormone (LHRH) agonists by avoiding "testosterone flare" and lower follicle-stimulating hormone (FSH) levels. The direct effect of degarelix and leuprolide on human prostate cancer cells was evaluated. In LNCaP, C4-2BMDVR, and CWR22Rv1 cells, degarelix significantly reduced cell viability compared with the controls (P ≤ 0.01). Leuprolide was stimulatory in the same cell lines. In C4-2B MDVR cells, degarelix alone or combined with abiraterone or enzalutamide reduced the AR-V7 protein expression compared with the control group. SCID mice bearing VCaP xenograft tumors were divided into 4 groups and treated with surgical castration, degarelix, leuprolide, or buffer alone for 4 weeks. Leuprolide slightly suppressed tumor growth compared with the vehicle control group (P > 0.05). Tumors in degarelix-treated mice were 67% of those in the leuprolide-treatment group but 170% larger than in surgically castrated ones. Measurements of intratumoral steroids in serum, tumor samples, or treated cell pellets by LC/MS confirmed that degarelix better decreased the levels of testosterone and steroidogenesis pathway intermediates, comparable to surgical castration, whereas leuprolide had no inhibitory effect. Collectively, our results suggested a selective mechanism of action of degarelix against androgen steroidogenesis and AR-variants. This study provides additional molecular insights regarding the mechanism of degarelix compared with GnRH agonist therapy, which may have clinical implications.


Asunto(s)
Empalme Alternativo/genética , Andrógenos/metabolismo , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Animales , Recuento de Células , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Leuprolida/farmacología , Leuprolida/uso terapéutico , Masculino , Ratones SCID , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Receptores LHRH/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncogene ; 38(1): 17-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30072740

RESUMEN

During the evolution into castration or therapy resistance, prostate cancer cells reprogram the androgen responses to cope with the diminishing level of androgens, and undergo metabolic adaption to the nutritionally deprived and hypoxia conditions. AR (androgen receptor) and PKM2 (pyruvate kinase M2) have key roles in these processes. We report in this study, KDM8/JMJD5, a histone lysine demethylase/dioxygnase, exhibits a novel property as a dual coactivator of AR and PKM2 and as such, it is a potent inducer of castration and therapy resistance. Previously, we showed that KDM8 is involved in the regulation of cell cycle and tumor metabolism in breast cancer cells. Its role in prostate cancer has not been explored. Here, we show that KDM8's oncogenic properties in prostate cancer come from its direct interaction (1) with AR to affect androgen response and (2) with PKM2 to regulate tumor metabolism. The interaction with AR leads to the elevated expression of androgen response genes in androgen-deprived conditions. They include ANCCA/ATAD2 and EZH2, which are directly targeted by KDM8 and involved in sustaining the survival of the cells under hormone-deprived conditions. Notably, in enzalutamide-resistant cells, the expressions of both KDM8 and EZH2 are further elevated, so are neuroendocrine markers. Consequently, EZH2 inhibitors or KDM8 knockdown both resensitize the cells toward enzalutamide. In the cytosol, KDM8 associates with PKM2, the gatekeeper of pyruvate flux and translocates PKM2 into the nucleus, where the KDM8/PKM2 complex serves as a coactivator of HIF-1α to upregulate glycolytic genes. Using shRNA knockdown, we validate KDM8's functions as a regulator for both androgen-responsive and metabolic genes. KDM8 thus presents itself as an ideal therapeutic target for metabolic adaptation and castration-resistance of prostate cancer cells.


Asunto(s)
Adenocarcinoma/metabolismo , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/fisiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Hormonas Tiroideas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Transporte Activo de Núcleo Celular , Adenocarcinoma/patología , Animales , Benzamidas , Línea Celular Tumoral , Proteínas de Unión al ADN/fisiología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Proteína Potenciadora del Homólogo Zeste 2/genética , Técnicas de Silenciamiento del Gen , Glucólisis/genética , Xenoinjertos , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Mapeo de Interacción de Proteínas , ARN Interferente Pequeño/genética , Receptores Androgénicos/genética , Proteínas de Unión a Hormona Tiroide
18.
Mol Cancer Ther ; 17(10): 2197-2205, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29891490

RESUMEN

Current treatments for castration resistant prostate cancer (CRPC) largely fall into two classes: androgen receptor (AR)-targeted therapies such as the next-generation antiandrogen therapies (NGAT), enzalutamide and abiraterone, and taxanes such as docetaxel and cabazitaxel. Despite improvements in outcomes, patients still succumb to the disease due to the development of resistance. Further complicating the situation is lack of a well-defined treatment sequence and potential for cross-resistance between therapies. We have developed several models representing CRPC with acquired therapeutic resistance. Here, we utilized these models to assess putative cross-resistance between treatments. We find that resistance to enzalutamide induces resistance to abiraterone and vice versa, but resistance to neither alters sensitivity to taxanes. Acquired resistance to docetaxel induces cross-resistance to cabazitaxel but not to enzalutamide or abiraterone. Correlating responses with known mechanisms of resistance indicates that AR variants are associated with resistance to NGATs, whereas the membrane efflux protein ABCB1 is associated with taxane resistance. Mechanistic studies show that AR variant-7 (AR-v7) is involved in NGAT resistance but not resistance to taxanes. Our findings suggest the existence of intra cross-resistance within a drug class (i.e., within NGATs or within taxanes), whereas inter cross-resistance between drug classes does not develop. Furthermore, our data suggest that resistance mechanisms differ between drug classes. These results may have clinical implications by showing that treatments of one class can be sequenced with those of another, but caution should be taken when sequencing similar classed drugs. In addition, the development and use of biomarkers indicating resistance will improve patient stratification for treatment. Mol Cancer Ther; 17(10); 2197-205. ©2018 AACR.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Taxoides/farmacología , Biomarcadores de Tumor , Línea Celular Tumoral , Docetaxel/farmacología , Humanos , Masculino , Estadificación de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
19.
Nat Commun ; 9(1): 4700, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446660

RESUMEN

Protein homeostasis (proteostasis) is a potential mechanism that contributes to cancer cell survival and drug resistance. Constitutively active androgen receptor (AR) variants confer anti-androgen resistance in advanced prostate cancer. However, the role of proteostasis involved in next generation anti-androgen resistance and the mechanisms of AR variant regulation are poorly defined. Here we show that the ubiquitin-proteasome-system (UPS) is suppressed in enzalutamide/abiraterone resistant prostate cancer. AR/AR-V7 proteostasis requires the interaction of E3 ubiquitin ligase STUB1 and HSP70 complex. STUB1 disassociates AR/AR-V7 from HSP70, leading to AR/AR-V7 ubiquitination and degradation. Inhibition of HSP70 significantly inhibits prostate tumor growth and improves enzalutamide/abiraterone treatments through AR/AR-V7 suppression. Clinically, HSP70 expression is upregulated and correlated with AR/AR-V7 levels in high Gleason score prostate tumors. Our results reveal a novel mechanism of anti-androgen resistance via UPS alteration which could be targeted through inhibition of HSP70 to reduce AR-V7 expression and overcome resistance to AR-targeted therapies.


Asunto(s)
Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Proteostasis/efectos de los fármacos , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Androstenos/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Benzamidas , Línea Celular Tumoral , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Clasificación del Tumor , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Próstata/crecimiento & desarrollo , Neoplasias de la Próstata Resistentes a la Castración , Complejo de la Endopetidasa Proteasomal/farmacología , Ubiquitina/farmacología , Ubiquitinación
20.
Sci Transl Med ; 10(439)2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720449

RESUMEN

Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antineoplásicos/uso terapéutico , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA