Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2308994121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190536

RESUMEN

The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.


Asunto(s)
Pueblo Asiatico , Migración Humana , Tiempo (Meteorología) , Humanos , África , Asia , Asia Oriental
2.
J Sci Food Agric ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794780

RESUMEN

BACKGROUND: Soil water and organic carbon (C) are key factors affecting the growth and development of apple seedlings. The objective of the study was to investigate the effects of different soil moisture and glucose supplies on apple seedling growth and soil enzyme activities. We hypothesized that the growth of apple seedlings was affected by soil water and C content through their effects on root structure, plant physiological properties and soil enzymatic activities. A pot experiment consisting of nine treatments was set up, including three water treatments with soil moisture contents at 75-85% (normal irrigation, CK), 65-75% (light water stress, LS), and 55-65% (mild water stress, MS) of the soil field capacity, in combination with three glucose treatments with carbon/nitrogen (C/N) ratio of 7.5 (C1, no adding glucose), 10 (C2) and 15 (C3), respectively. RESULTS: Results showed that the LSC2 treatment significantly increased plant height by 7%, stem diameter by 5% and leaf area by 17%, as compared with LSC1. Also, LSC2 significantly increased root dry weight, root vitality and soil enzyme activities. Moreover, results of leaf photosynthetic, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) and proline contents also proved that adding glucose improved the drought resistance of plants. CONCLUSION: LSC2 treatment is more conducive to the growth of apple seedlings, and application of carbon has a good alleviation effect on plant water stress. The study demonstrated that addition of exogenous glucose alleviated light water deficiency, significantly affected root vitality, and promoted apple seedling growth. © 2024 Society of Chemical Industry.

3.
J Sci Food Agric ; 102(4): 1508-1513, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34402076

RESUMEN

BACKGROUND: Water is critical to the production of crops, especially when faced with seasonal drought or freshwater scarcity. We compared the effect of negative pressure irrigation (NPI) on water use efficiency (WUE), nutrient uptake, yield and quality of Brassica chinensis L. using a greenhouse plot experiment. Three different water supply pressures (-5, -10 and -15 kPa), and a conventional irrigation (CK) treatment, were arranged in a randomized design with three replications. RESULTS: Our results suggest that plant height, leaf area, number of leaves and ratio of root to shoot were significantly correlated with water supply pressure. Specifically, our results show that B. chinensis L. yield was increased 50% with NPI versus CK. Water supply pressure had a significant effect on N and P nutrient uptake and no significant effect on K. The average concentration of vitamin C was greatest with -5 kPa treatment and consecutively declined. According to our results, NPI can save up to 36.8% of water used and improve WUE by 61.3% during growth of B. chinensis L. Our results suggest that the optimum irrigation management strategy is -5 kPa treatment. CONCLUSION: NPI versus CK can provide more stable irrigation water and retain soil moisture during plant growth, resulting in an increased WUE and yield with suitable water supply pressure. While our results suggest that NPI can enhance B. chinensis L. yield and perhaps also quality, future research should explore the mechanism of NPI in relation to yield and water use efficiency. © 2021 Society of Chemical Industry.


Asunto(s)
Riego Agrícola , Brassica , Biomasa , Productos Agrícolas , Suelo , Agua/análisis
4.
Bull Environ Contam Toxicol ; 98(6): 837-844, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28374112

RESUMEN

The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg-1), Zn (99.72 mg kg-1), Pb (90.99 mg kg-1), Cu (36.14 mg kg-1). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , China , Ciudades , Contaminación Ambiental , Magnetismo
5.
ScientificWorldJournal ; 2014: 517020, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24892058

RESUMEN

The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area.


Asunto(s)
Agricultura , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Análisis Multivariante , Análisis de Componente Principal
6.
Toxics ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36850965

RESUMEN

Bt transgenic white poplar has been commercially planted in China since 2002, and it showed obvious insect resistance in the field. However, the ecological risk of planting Bt transgenic poplar in a field contaminated with heavy metals has received little attention. The effects of Pb(II) and Zn(II) contamination on the adsorption, desorption and degradation of Bt toxin identical to Bt transgenic poplar in black soil were studied. The results showed that the adsorption of Bt toxin was enhanced and the desorption of Bt toxin was inhibited in black soil by Pb(II) and Zn(II) at concentrations between 0 and 1 mmol/L, and the effect of Pb(II) on Bt toxin was greater than that of Zn(II). In the presence of heavy metal ions, the Cry1Ac toxin molecules are oriented with domain I toward soil particles through the metal ion bridge. The promoting mechanism of Bt toxin adsorption by heavy metal ions in black soil is mainly attributed to cation-controlled electrostatic attraction (CCEA), which is different from patch-controlled electrostatic attraction (PCEA). With the increase in soil concentration from 1 to 4 mg/mL, the adsorption amount of Bt toxin showed a downward trend, and both Pb(II) and Zn(II) had the maximal promotion effect when the soil concentration was 2 mg/mL. The promoting effect of Zn(II) on the adsorption of Bt toxin increased with the increased temperature (5-45 °C), but the promoting effect of Pb(II) was maximal at 25 °C. Both Pb(II) and Zn(II) affected the degradation characteristics of Bt toxin in black soil. For the lead-contaminated black soil, the residual amount of Bt toxin increased in the early stage but decreased in the later stage compared to the control soil. For the zinc-contaminated black soil, the residual amount of Bt toxin decreased compared to the control soil except between the second and tenth days. In this study, it was observed that Bt toxin was degraded rapidly in the early stage, followed by a large amount of released Bt toxin and slow degradation in the middle and late stages.

7.
Environ Sci Pollut Res Int ; 27(21): 26495-26501, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32367238

RESUMEN

China has become the largest carbon-emitting country in the world since 2007. To achieve national environmental goals by 2030, the carbon emissions per unit of gross domestic product (GDP) will need to fall to 60-65% of 2005 levels. Such a dramatic decrease presents a challenge for a nation in adjusting its energy source and usage, but via monitoring of reductions, greater understanding can be gained of how carbon emitters are responding to national goals. We analyzed the change in carbon emissions from China's fossil energy consumption from population, per capita GDP, energy efficiency improvements and energy structure using a Kaya identity model and Logarithmic Mean Divisia Index (LMDI) factor decomposition method from 2006 to 2018. Results suggest that trends in carbon emissions from 2006 to 2018 can be broken down into four periods: a rapid increase period during 2006-2011, a slowdown increase period during 2011-2014, a consecutive decline period during 2014-2016 and a rebound during 2017-2018. Trends in carbon emissions were greatly affected by per capita GDP and energy efficiency. While per capita GDP increased carbon emissions, energy efficiency had a countering effect on carbon emissions. Our results suggests that China's measures in the past decade to reduce carbon emissions (i.e. carrying out carbon emissions trading on a fixed basis, readjusting the economic structure, optimizing the energy structure, improving energy efficiency and increasing forest carbon sinks) have helped to reduce carbon emissions. However, China should continue to actively respond to climate change while striving to achieve of economic sustainable development and social progress.


Asunto(s)
Dióxido de Carbono/análisis , Carbono/análisis , China , Desarrollo Económico , Producto Interno Bruto
8.
J Hazard Mater ; 172(1): 494-7, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19643536

RESUMEN

Magnetic susceptibility can provide rich environmental information, especially for hazardous heavy metals and saline-alkaline in the contaminated soils. Magnetic susceptibility in four vertical profiles from saline-alkaline soils in lower Hai River basin was investigated. Soil sites were extended from alluvial fan to coastal plain areas. They are aligned along a latitudinal strip. Magnetic parameters including low/high frequency susceptibility, frequency-dependent susceptibility was measured. Moreover, some standard pedological parameters such as pH value and organic matter content were also determined. The results showed that low frequency magnetic susceptibility values is very high at the surface and decreases with the profile to a low value. In all profiles from alluvial fan frequency-dependent susceptibility greater than 3% may suggest the presence of relatively more super-paramagnetic particles. Magnetic susceptibility showed obvious vertical distribution in alluvial fan higher than coastal plain. No significant correlations between organic matter, pH and low frequency magnetic susceptibility were found, while there is a negative correlation between organic matter and frequency-dependent susceptibility. A positive correlation between pH and frequency-dependent susceptibility was found in the study areas.


Asunto(s)
Magnetismo , Contaminantes del Suelo/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , China , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Contaminación Ambiental , Geografía , Sustancias Peligrosas , Concentración de Iones de Hidrógeno , Residuos Industriales , Metales Pesados/análisis , Material Particulado , Ríos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
9.
J Hazard Mater ; 167(1-3): 1246-51, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19282107

RESUMEN

Understanding spatial variability of hazardous soil heavy metals is an important precondition for suitably monitoring and evaluating eco-environment quality in the primary agricultural production zone. One hundred topsoils were sampled from the urban-rural transition zone in Taihang Piedmont Plain, China. The contents of eight heavy metals Cu, Zn, Cr, Ni, Pb, Cd, Hg and As were tested for each soil sample, and their spatial patterns were analyzed by the semivariogram approach of geostatistics and geographical information system (GIS) technology. Results showed that Cd concentration exceeded its background level. The local pollution from Cd attributed to the anthropogenic influence. The concentrations of eight hazardous heavy metals are relatively lower than the critical values of the national soil quality standard. The correlation distance of soil heavy metals ranged from 3.28 to 11.63 km, with the eight heavy metals having moderate spatial dependence. Cu, Cr, Ni, Pb and As are associated with and controlled by parent material. The results are helpful for improving agricultural and forest ecosystem in the arid and semiarid region.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , Cadmio/análisis , China , Suelo/análisis
10.
C R Biol ; 332(6): 558-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19520319

RESUMEN

The understanding of the spatial variability of soil heavy metals is an important precondition for suitably monitoring and evaluating eco-environment quality in a primary agricultural production zone. 100 topsoils were sampled from the Zhengding County of the urban-rural transition zone in Taihang Piedmont Plain, China. The contents of eight heavy metals Cu, Zn, Cr, Ni, Pb, Cd, Hg and As were tested for each soil sample, and their spatial patterns were analyzed by using the semivariogram approach of geostatistics, with which the kriging method was used to estimate the unobserved points. Then GIS technology was employed to produce spatial distribution maps of the 8 elements. The results showed that the concentration of Cd exceeded its background level. The local pollution from Cd was attributed to the anthropogenic influence. The concentrations of the eight heavy metals are relatively lower than the critical values of the national soil quality standard. The correlation distance of soil heavy metals ranged from 3.28 to 11.63 km, with the eight heavy metals having moderate spatial dependence. Cu, Cr, Ni, Pb and As were associated with and controlled by parent material. The spherical model was fitted to the semivariograms of Cu, Cr, Cd, Hg, Pb and As, and the Zn and Ni were fitted with the Gaussian model and the linear model, respectively. The results are helpful for improving agricultural and forest ecosystem in the region.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Suelo/análisis , China , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA