Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 945
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 388(22): 2025-2036, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256974

RESUMEN

BACKGROUND: The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. METHODS: In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. RESULTS: A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. CONCLUSIONS: In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban. (Funded by the National Natural Science Foundation of China; RESCUE BT2 Chinese Clinical Trial Registry number, ChiCTR2000029502.).


Asunto(s)
Fibrinolíticos , Accidente Cerebrovascular Isquémico , Tirofibán , Humanos , Aspirina/efectos adversos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Fibrinolíticos/efectos adversos , Fibrinolíticos/uso terapéutico , Hemorragias Intracraneales/inducido químicamente , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/etiología , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Tirofibán/efectos adversos , Tirofibán/uso terapéutico , Resultado del Tratamiento , Enfermedades Arteriales Cerebrales/tratamiento farmacológico , Enfermedades Arteriales Cerebrales/etiología
2.
Blood ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635773

RESUMEN

Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. In this study, we investigated the role of tRNA pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By utilizing patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic PUS1 mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA iPSCs and anemia in the MLASA mouse model. Both MLASA iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels due to pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mTOR inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment effectively ameliorated anemia phenotypes in the MLASA patient. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for anemia patients facing challenges related to protein translation.

3.
Nature ; 583(7818): 852-857, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699416

RESUMEN

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Asunto(s)
Histonas/química , Histonas/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilación , Ratones , Modelos Moleculares , Fosforilación
4.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37193676

RESUMEN

Protein-deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11 kcal/mol. The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Biología Computacional/métodos , ADN/genética , Unión Proteica
5.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889087

RESUMEN

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Asunto(s)
Oogénesis , ARN Mensajero Almacenado , Femenino , Humanos , Meiosis/genética , Oocitos/fisiología , Oogénesis/genética , ARN Mensajero/genética , ARN Mensajero Almacenado/genética , Ratones Endogámicos C57BL , Masculino , Animales , Ratones
6.
J Proteome Res ; 23(1): 500-509, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38097511

RESUMEN

Lung cancer is the leading cause of cancer-related death, with high morbidity and mortality rates due to the lack of reliable methods for diagnosing lung cancer at an early stage. Low-dose computed tomography can help detect abnormal areas in the lungs, but only 16% of cases are diagnosed early. Tests for lung cancer markers are often employed to determine genetic expression or mutations in lung carcinogenesis. Serum glycome analysis is a promising new method for early lung cancer diagnosis as glycopatterns exhibit significant differences in lung cancer patients. In this study, we employed a solid-phase chemoenzymatic method to systematically compare glycopatterns in benign cases, adenocarcinoma before and after surgery, and advanced stages of adenocarcinoma. Our findings indicate that serum high-mannose levels are elevated in both benign cases and adenocarcinoma, while complex N-glycans, including fucose and 2,6-linked sialic acid, are downregulated in the serum. Subsequently, we developed an algorithm that utilizes 16 altered N-glycans, 7 upregulated and 9 downregulated, to generate a score based on their intensity. This score can predict the stages of cancer progression in patients through glycan characterization. This methodology offers a potential means of diagnosing lung cancer through serum glycome analysis.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Polisacáridos/metabolismo , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Fucosa
7.
J Am Chem Soc ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869937

RESUMEN

Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.

8.
J Am Chem Soc ; 146(7): 4942-4957, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38326715

RESUMEN

Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.

9.
J Am Chem Soc ; 146(10): 6618-6627, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349322

RESUMEN

Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.

10.
J Am Chem Soc ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007870

RESUMEN

Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.

11.
Antimicrob Agents Chemother ; 68(7): e0052424, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38899917

RESUMEN

HRS9432(A) is a long-acting echinocandin antifungal medication primarily used to treat invasive fungal infections, particularly invasive candidiasis. The safety, tolerability, and pharmacokinetic characteristics of HRS9432(A) injection were investigated in a randomized, double-blind, placebo-controlled, single- and multiple-ascending-dose Phase I study involving 56 healthy adult subjects. Doses ranging from 200 to 1200 mg were administered. Safety was continually monitored, including adverse events, clinical laboratory examinations, vital signs, 12-lead electrocardiograms, and physical examinations, while the pharmacokinetic profile within the body was evaluated. The results indicated that concentrations of HRS9432 peaked immediately after infusion, demonstrating essentially linear pharmacokinetic characteristics within the dosage range of 200-1,200 mg. It exhibited a low clearance rate and an extended half-life, with a clearance of approximately 0.2 L/h, a volume of distribution of around 40 L, and a half-life of approximately 140h following a single dose. The accumulation index for AUC0-τ after multiple doses ranged from 1.41 to 1.75. No severe adverse events occurred during the study, and the severity of all adverse events was mild or moderate. Therefore, the intravenous administration of HRS9432(A) in healthy Chinese adult subjects, either as multiple infusions of 200 to 600 mg (once a week, four doses) or as a single infusion of 900-1,200 mg, demonstrated overall good safety and tolerability. The pharmacokinetic exhibited essentially linear characteristics in the body, supporting a weekly dosing frequency for clinical applications and providing additional options for the treatment or prevention of invasive fungal infections. CLINICAL TRIALS: This study is registered with the International Clinical Trials Registry Platform as ChiCTR2300073525.


Asunto(s)
Antifúngicos , Voluntarios Sanos , Humanos , Método Doble Ciego , Adulto , Masculino , Antifúngicos/farmacocinética , Antifúngicos/administración & dosificación , Antifúngicos/efectos adversos , Femenino , Adulto Joven , Semivida , Área Bajo la Curva , Micafungina/farmacocinética , Micafungina/administración & dosificación , Micafungina/efectos adversos , Persona de Mediana Edad , Pueblo Asiatico , Pueblos del Este de Asia
12.
Anal Chem ; 96(4): 1498-1505, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38216336

RESUMEN

Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment in shot-gun glycoproteomics to enhance the glycopeptide signal and minimize the ionization competition of peptides. In this work, we have developed a novel hydrophilic material (glycoHILIC) based on glycopeptides and peptides to provide hydrophilic properties. GlycoHILIC was synthesized by oxidizing cotton and then reacting the resulting aldehyde with the N-terminus of the glycopeptide or peptide by reductive amination. Due to the large amount of hydrophilic carbohydrates and hydrophilic amino acids contained in glycopeptides, glycoHILIC showed significantly better enrichment of glycopeptides than cotton itself. Our results demonstrate that glycoHILIC has high selectivity, a low detection limit, and good stability. Over 257 unique N-linked glycosylation sites in 1477 intact N-glycopeptides from 146 glycoproteins were identified from 1 µL of human serum using glycoHILIC. Serum analysis of pancreatic cancer patients found that 38 N-glycopeptides among 21 glycoproteins changed significantly, of which 7 N-glycopeptides increased and 31 N-glycopeptides decreased. These results demonstrate that glycoHILIC can be used for glycopeptide enrichment and analysis.


Asunto(s)
Glicopéptidos , Glicoproteínas , Humanos , Glicopéptidos/análisis , Glicosilación , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas
13.
Anal Chem ; 96(28): 11137-11145, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953491

RESUMEN

The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores , Humanos , Glicosilación , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Células Jurkat
14.
Biochem Biophys Res Commun ; 710: 149882, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583231

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease associated with type 2 diabetes mellitus (T2D). NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and even cancer, all of which have a very poor prognosis. Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist, has been recognized as a specific drug for the treatment of diabetes. In this study, we used a gene mutation mouse model (db/db mice) to investigate the potential liver-improving effects of semaglutide. The results showed that semaglutide improved lipid levels and glucose metabolism in db/db mice. HE staining and oil red staining showed alleviation of liver damage and reduction of hepatic lipid deposition after injection of semaglutide. In addition, semaglutide also improved the integrity of gut barrier and altered gut microbiota, especially Alloprevotella, Alistpes, Ligilactobacillus and Lactobacillus. In summary, our findings validate that semaglutide induces modifications in the composition of the gut microbiota and ameliorates NAFLD, positioning it as a promising therapeutic candidate for addressing hepatic steatosis and associated inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Péptidos Similares al Glucagón , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Lípidos/farmacología , Ratones Endogámicos C57BL
15.
Chemistry ; 30(37): e202401172, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38682408

RESUMEN

The protection of lead halide perovskite within a stable matrix normally leads to the loss of semiconducting properties. Here, we report the synthesis of perovskite-ZIF glass interpenetrating networks via a cold pressing method, which allows the advantages of bright photoluminescence, high photoconductivity and environmental stability. This hybrid architecture has provided a novel design strategy for the real-world application of perovskite-based devices.

16.
Chemistry ; : e202401475, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888382

RESUMEN

The utilization of low-energy sunlight to produce renewable fuels is a subject of great interest. Here we report the first example of metal chalcogenide quantum dots (QDs) capped with a pyridinethiolate carboxylic acid (pyS-COOH) for red-light-driven H2 production in water. The precious-metal-free system is robust over 240 h, and achieves a turnover number (TON) of 43910 ± 305 (vs Ni) with a rate of 31570 ± 1690 mmol g-1 h-1 for hydrogen production. In contrast to the inactive QDs capped with other thiolate ligands, the CdSe-pyS-COOH QDs give a significantly higher singlet oxygen quantum yield [ΦΔ (1O2)] in solution.

17.
Chemistry ; : e202401739, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954398

RESUMEN

Metal halide materials have recently drawn increasing research interest for their excellent opto-electronic properties and structural diversity, but their resulting rigid structures render them brittle and poor formability during manufacturing. Here we demonstrate a thermoplastic luminant hybrid lead halide solid by integrating lead bromide complex into tri-n-octylphosphine oxide (TOPO) matrix. The construction of the hybrid materials can be achieved by a simple dissolution process, in which TOPO molecules act as the solvents and ligands to yield the monodispersed clusters. The combination of these functional units enables the near-room-temperature melt-processing of the materials into targeted geometry by simple molding or printing techniques, which offer possibilities for fluorescent writing inks with outstanding self-healing capacity to physical damage. The intermarriage between metal halide clusters with functional molecules expands the range of practical applications for hybrid metal halide materials.

18.
Genetica ; 152(2-3): 119-132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789817

RESUMEN

The Universal Stress Protein (USP) primarily participates in cellular responses to biotic and abiotic stressors, playing a pivotal role in plant growth, development, and Stress responses to adverse environmental conditions. Totals of 23, 26 and 26 USP genes were recognized in Arabidopsis thaliana, Zea mays, and Oryza sativa, respectively. According to USP genes physicochemical properties, proteins from USP I class were identified as hydrophilic proteins with high stability. Based on phylogenetic analysis, USP genes family were classified into nine groups, USP II were rich in motifs. Additionally, members of the same subgroup exhibited similar numbers of introns/exons, and shared conserved domains, indicating close evolutionary relationships. Motif analysis results demonstrated a high degree of conservation among USP genes. Chromosomal distribution suggested that USP genes might have undergone gene expansion through segmental duplication in Arabidopsis thaliana, Zea mays, and Oryza sativa. Most Ka/Ks ratios were found to be less than 1, suggesting that USP genes in Arabidopsis thaliana, Zea mays, and Oryza sativa have experienced purifying selection. Expression profile analysis revealed that USP genes primarily respond to drought stress in Oryza sativa, temperature, and drought stress in Zea mays, and cold stress in Arabidopsis thaliana. Gene collinearity analysis can reveal correlations between genes, aiding subsequent in-depth investigations. This study sheds new light on the evolution of USP genes in monocots and dicots and lays the foundation for a better understanding of the biological functions of the USP genes family.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Oryza/genética , Zea mays/genética , Arabidopsis/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Genoma de Planta , Evolución Molecular , Cromosomas de las Plantas/genética
19.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512468

RESUMEN

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico/métodos , Ligamiento Genético , Fitomejoramiento , Fenotipo
20.
J Chem Inf Model ; 64(8): 3548-3557, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587997

RESUMEN

Protein-DNA interactions are pivotal to various cellular processes. Precise identification of the hotspot residues for protein-DNA interactions holds great significance for revealing the intricate mechanisms in protein-DNA recognition and for providing essential guidance for protein engineering. Aiming at protein-DNA interaction hotspots, this work introduces an effective prediction method, ESPDHot based on a stacked ensemble machine learning framework. Here, the interface residue whose mutation leads to a binding free energy change (ΔΔG) exceeding 2 kcal/mol is defined as a hotspot. To tackle the imbalanced data set issue, the adaptive synthetic sampling (ADASYN), an oversampling technique, is adopted to synthetically generate new minority samples, thereby rectifying data imbalance. As for molecular characteristics, besides traditional features, we introduce three new characteristic types including residue interface preference proposed by us, residue fluctuation dynamics characteristics, and coevolutionary features. Combining the Boruta method with our previously developed Random Grouping strategy, we obtained an optimal set of features. Finally, a stacking classifier is constructed to output prediction results, which integrates three classical predictors, Support Vector Machine (SVM), XGBoost, and Artificial Neural Network (ANN) as the first layer, and Logistic Regression (LR) algorithm as the second one. Notably, ESPDHot outperforms the current state-of-the-art predictors, achieving superior performance on the independent test data set, with F1, MCC, and AUC reaching 0.571, 0.516, and 0.870, respectively.


Asunto(s)
ADN , Aprendizaje Automático , ADN/química , ADN/metabolismo , Unión Proteica , Redes Neurales de la Computación , Proteínas/química , Proteínas/metabolismo , Termodinámica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Máquina de Vectores de Soporte , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA