Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Entropy (Basel) ; 24(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35455118

RESUMEN

The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learning performance of artificial neural networks. Importantly, existing spike-based online meta-learning models do not target the robust learning based on spatio-temporal dynamics and superior machine learning theory. In this invited article, we propose a novel spike-based framework with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based online meta-learning scheme in a recurrent SNN architecture. We examine the performance based on various types of tasks, including autonomous navigation and the working memory test. The experimental results show that the proposed MeMEE model can effectively improve the accuracy and the robustness of the spike-based meta-learning performance. More importantly, the proposed MeMEE model emphasizes the application of the modern information theoretic learning approach on the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new perspectives for further integration of advanced information theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.

2.
IEEE Trans Biomed Circuits Syst ; 18(1): 186-199, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37725735

RESUMEN

Biologically plausible learning with neuronal dendrites is a promising perspective to improve the spike-driven learning capability by introducing dendritic processing as an additional hyperparameter. Neuromorphic computing is an effective and essential solution towards spike-based machine intelligence and neural learning systems. However, on-line learning capability for neuromorphic models is still an open challenge. In this study a novel neuromorphic architecture with dendritic on-line learning (NADOL) is presented, which is a novel efficient methodology for brain-inspired intelligence on embedded hardware. With the feature of distributed processing using spiking neural network, NADOL can cut down the power consumption and enhance the learning efficiency and convergence speed. A detailed analysis for NADOL is presented, which demonstrates the effects of different conditions on learning capabilities, including neuron number in hidden layer, dendritic segregation parameters, feedback connection, and connection sparseness with various levels of amplification. Piecewise linear approximation approach is used to cut down the computational resource cost. The experimental results demonstrate a remarkable learning capability that surpasses other solutions, with NADOL exhibiting superior performance over the GPU platform in dendritic learning. This study's applicability extends across diverse domains, including the Internet of Things, robotic control, and brain-machine interfaces. Moreover, it signifies a pivotal step in bridging the gap between artificial intelligence and neuroscience through the introduction of an innovative neuromorphic paradigm.


Asunto(s)
Inteligencia Artificial , Educación a Distancia , Redes Neurales de la Computación , Computadores , Dendritas
3.
Artículo en Inglés | MEDLINE | ID: mdl-37991917

RESUMEN

Brain-inspired computing technique presents a promising approach to prompt the rapid development of artificial general intelligence (AGI). As one of the most critical aspects, spiking neural networks (SNNs) have demonstrated superiority for AGI, such as low power consumption. Effective training of SNNs with high generalization ability, high robustness, and low power consumption simultaneously is a significantly challenging problem for the development and success of applications of spike-based machine intelligence. In this research, we present a novel and flexible learning framework termed high-order spike-based information bottleneck (HOSIB) leveraging the surrogate gradient technique. The presented HOSIB framework, including second-order and third-order formation, i.e., second-order information bottleneck (SOIB) and third-order information bottleneck (TOIB), comprehensively explores the common latent architecture and the spike-based intrinsic information and discards the superfluous information in the data, which improves the generalization capability and robustness of SNN models. Specifically, HOSIB relies on the information bottleneck (IB) principle to prompt the sparse spike-based information representation and flexibly balance its exploitation and loss. Extensive classification experiments are conducted to empirically show the promising generalization ability of HOSIB. Furthermore, we apply the SOIB and TOIB algorithms in deep spiking convolutional networks to demonstrate their improvement in robustness with various categories of noise. The experimental results prove the HOSIB framework, especially TOIB, can achieve better generalization ability, robustness and power efficiency in comparison with the current representative studies.

4.
Neural Netw ; 165: 31-42, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276809

RESUMEN

Spike-based perception brings up a new research idea in the field of neuromorphic engineering. A high-performance biologically inspired flexible spiking neural network (SNN) architecture provides a novel method for the exploration of perception mechanisms and the development of neuromorphic computing systems . In this article, we present a biological-inspired spike-based SNN perception digital system that can realize robust perception. The system employs a fully paralleled pipeline scheme to improve the performance and accelerate the processing of feature extraction. An auditory perception system prototype is realized on ten Intel Cyclone field-programmable gate arrays, which can reach the maximum frequency of 107.28 MHz and the maximum throughput of 5364 Mbps. Our design also achieves the power of 5. 148 W/system and energy efficiency of 845.85 µJ. Our auditory perception implementation is also proved to have superior robustness compared with other SNN systems. We use TIMIT digit speech in noise in accuracy testing. Result shows that it achieves up to 85.75% speech recognition accuracy under obvious noise conditions (signal-to-noise ratio of 20 dB) and maintain small accuracy attenuation with the decline of the signal-to-noise ratio. The overall performance of our proposed system outperforms the state-of-the-art perception system on SNN.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Percepción Auditiva
5.
Front Neurosci ; 16: 850932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615277

RESUMEN

Spiking neural networks (SNNs) are regarded as a promising candidate to deal with the major challenges of current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the few-shot learning performance of artificial neural networks. Importantly, existing spike-based few-shot learning models do not target robust learning based on spatiotemporal dynamics and superior machine learning theory. In this paper, we propose a novel spike-based framework with the entropy theory, namely, heterogeneous ensemble-based spike-driven few-shot online learning (HESFOL). The proposed HESFOL model uses the entropy theory to establish the gradient-based few-shot learning scheme in a recurrent SNN architecture. We examine the performance of the HESFOL model based on the few-shot classification tasks using spiking patterns and the Omniglot data set, as well as the few-shot motor control task using an end-effector. Experimental results show that the proposed HESFOL scheme can effectively improve the accuracy and robustness of spike-driven few-shot learning performance. More importantly, the proposed HESFOL model emphasizes the application of modern entropy-based machine learning methods in state-of-the-art spike-driven learning algorithms. Therefore, our study provides new perspectives for further integration of advanced entropy theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.

6.
IEEE Trans Neural Netw Learn Syst ; 33(7): 2801-2815, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33428574

RESUMEN

The further exploration of the neural mechanisms underlying the biological activities of the human brain depends on the development of large-scale spiking neural networks (SNNs) with different categories at different levels, as well as the corresponding computing platforms. Neuromorphic engineering provides approaches to high-performance biologically plausible computational paradigms inspired by neural systems. In this article, we present a biological-inspired cognitive supercomputing system (BiCoSS) that integrates multiple granules (GRs) of SNNs to realize a hybrid compatible neuromorphic platform. A scalable hierarchical heterogeneous multicore architecture is presented, and a synergistic routing scheme for hybrid neural information is proposed. The BiCoSS system can accommodate different levels of GRs and biological plausibility of SNN models in an efficient and scalable manner. Over four million neurons can be realized on BiCoSS with a power efficiency of 2.8k larger than the GPU platform, and the average latency of BiCoSS is 3.62 and 2.49 times higher than conventional architectures of digital neuromorphic systems. For the verification, BiCoSS is used to replicate various biological cognitive activities, including motor learning, action selection, context-dependent learning, and movement disorders. Comprehensively considering the programmability, biological plausibility, learning capability, computational power, and scalability, BiCoSS is shown to outperform the alternative state-of-the-art works for large-scale SNN, while its real-time computational capability enables a wide range of potential applications.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Encéfalo/fisiología , Cognición , Humanos , Neuronas/fisiología
7.
Front Neurosci ; 16: 850945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527819

RESUMEN

Working memory is a fundamental feature of biological brains for perception, cognition, and learning. In addition, learning with working memory, which has been show in conventional artificial intelligence systems through recurrent neural networks, is instrumental to advanced cognitive intelligence. However, it is hard to endow a simple neuron model with working memory, and to understand the biological mechanisms that have resulted in such a powerful ability at the neuronal level. This article presents a novel self-adaptive multicompartment spiking neuron model, referred to as SAM, for spike-based learning with working memory. SAM integrates four major biological principles including sparse coding, dendritic non-linearity, intrinsic self-adaptive dynamics, and spike-driven learning. We first describe SAM's design and explore the impacts of critical parameters on its biological dynamics. We then use SAM to build spiking networks to accomplish several different tasks including supervised learning of the MNIST dataset using sequential spatiotemporal encoding, noisy spike pattern classification, sparse coding during pattern classification, spatiotemporal feature detection, meta-learning with working memory applied to a navigation task and the MNIST classification task, and working memory for spatiotemporal learning. Our experimental results highlight the energy efficiency and robustness of SAM in these wide range of challenging tasks. The effects of SAM model variations on its working memory are also explored, hoping to offer insight into the biological mechanisms underlying working memory in the brain. The SAM model is the first attempt to integrate the capabilities of spike-driven learning and working memory in a unified single neuron with multiple timescale dynamics. The competitive performance of SAM could potentially contribute to the development of efficient adaptive neuromorphic computing systems for various applications from robotics to edge computing.

8.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7126-7140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34115596

RESUMEN

Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Neuronas/fisiología , Computadores , Encéfalo/fisiología
9.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4398-4412, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33621181

RESUMEN

The cerebellum plays a vital role in motor learning and control with supervised learning capability, while neuromorphic engineering devises diverse approaches to high-performance computation inspired by biological neural systems. This article presents a large-scale cerebellar network model for supervised learning, as well as a cerebellum-inspired neuromorphic architecture to map the cerebellar anatomical structure into the large-scale model. Our multinucleus model and its underpinning architecture contain approximately 3.5 million neurons, upscaling state-of-the-art neuromorphic designs by over 34 times. Besides, the proposed model and architecture incorporate 3411k granule cells, introducing a 284 times increase compared to a previous study including only 12k cells. This large scaling induces more biologically plausible cerebellar divergence/convergence ratios, which results in better mimicking biology. In order to verify the functionality of our proposed model and demonstrate its strong biomimicry, a reconfigurable neuromorphic system is used, on which our developed architecture is realized to replicate cerebellar dynamics during the optokinetic response. In addition, our neuromorphic architecture is used to analyze the dynamical synchronization within the Purkinje cells, revealing the effects of firing rates of mossy fibers on the resonance dynamics of Purkinje cells. Our experiments show that real-time operation can be realized, with a system throughput of up to 4.70 times larger than previous works with high synaptic event rate. These results suggest that the proposed work provides both a theoretical basis and a neuromorphic engineering perspective for brain-inspired computing and the further exploration of cerebellar learning.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Encéfalo/fisiología , Cerebelo/fisiología , Neuronas/fisiología
10.
IEEE Trans Biomed Circuits Syst ; 15(6): 1320-1331, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34699367

RESUMEN

This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 µJ for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Teorema de Bayes , Encéfalo , Computadores , Humanos
11.
Front Neurosci ; 15: 601109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679295

RESUMEN

A critical challenge in neuromorphic computing is to present computationally efficient algorithms of learning. When implementing gradient-based learning, error information must be routed through the network, such that each neuron knows its contribution to output, and thus how to adjust its weight. This is known as the credit assignment problem. Exactly implementing a solution like backpropagation involves weight sharing, which requires additional bandwidth and computations in a neuromorphic system. Instead, models of learning from neuroscience can provide inspiration for how to communicate error information efficiently, without weight sharing. Here we present a novel dendritic event-based processing (DEP) algorithm, using a two-compartment leaky integrate-and-fire neuron with partially segregated dendrites that effectively solves the credit assignment problem. In order to optimize the proposed algorithm, a dynamic fixed-point representation method and piecewise linear approximation approach are presented, while the synaptic events are binarized during learning. The presented optimization makes the proposed DEP algorithm very suitable for implementation in digital or mixed-signal neuromorphic hardware. The experimental results show that spiking representations can rapidly learn, achieving high performance by using the proposed DEP algorithm. We find the learning capability is affected by the degree of dendritic segregation, and the form of synaptic feedback connections. This study provides a bridge between the biological learning and neuromorphic learning, and is meaningful for the real-time applications in the field of artificial intelligence.

12.
IEEE Trans Neural Netw Learn Syst ; 31(1): 148-162, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892250

RESUMEN

Multicompartment emulation is an essential step to enhance the biological realism of neuromorphic systems and to further understand the computational power of neurons. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale biologically meaningful neural networks with one million multi-compartment neurons (CMNs). The hardware platform uses four Altera Stratix III field-programmable gate arrays, and both the cellular and the network levels are considered, which provides an efficient implementation of a large-scale spiking neural network with biophysically plausible dynamics. At the cellular level, a cost-efficient multi-CMN model is presented, which can reproduce the detailed neuronal dynamics with representative neuronal morphology. A set of efficient neuromorphic techniques for single-CMN implementation are presented with all the hardware cost of memory and multiplier resources removed and with hardware performance of computational speed enhanced by 56.59% in comparison with the classical digital implementation method. At the network level, a scalable network-on-chip (NoC) architecture is proposed with a novel routing algorithm to enhance the NoC performance including throughput and computational latency, leading to higher computational efficiency and capability in comparison with state-of-the-art projects. The experimental results demonstrate that the proposed work can provide an efficient model and architecture for large-scale biologically meaningful networks, while the hardware synthesis results demonstrate low area utilization and high computational speed that supports the scalability of the approach.


Asunto(s)
Redes Neurales de la Computación , Neuronas/fisiología , Neuronas/ultraestructura , Algoritmos , Simulación por Computador , Sistemas de Computación , Computadores , Modelos Neurológicos
13.
Front Neurosci ; 13: 1078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680818

RESUMEN

Purkinje cell is an important neuron for the cerebellar information processing. In this work, we present an efficient implementation of a cerebellar Purkinje model using the Coordinate Rotation Digital Computer (CORDIC) algorithm and implement it on a Large-Scale Conductance-Based Spiking Neural Networks (LaCSNN) system with cost-efficient multiplier-less methods, which are more suitable for large-scale neural networks. The CORDIC-based Purkinje model has been compared with the original model in terms of the voltage activities, dynamic mechanisms, precision, and hardware resource utilization. The results show that the CORDIC-based Purkinje model can reproduce the same biological activities and dynamical mechanisms as the original model with slight deviation. In the aspect of the hardware implementation, it can use only logic resources, so it provides an efficient way for maximizing the FPGA resource utilization, thereby expanding the scale of neural networks that can be implemented on FPGAs.

14.
IEEE Trans Cybern ; 49(7): 2490-2503, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29993922

RESUMEN

The investigation of the human intelligence, cognitive systems and functional complexity of human brain is significantly facilitated by high-performance computational platforms. In this paper, we present a real-time digital neuromorphic system for the simulation of large-scale conductance-based spiking neural networks (LaCSNN), which has the advantages of both high biological realism and large network scale. Using this system, a detailed large-scale cortico-basal ganglia-thalamocortical loop is simulated using a scalable 3-D network-on-chip (NoC) topology with six Altera Stratix III field-programmable gate arrays simulate 1 million neurons. Novel router architecture is presented to deal with the communication of multiple data flows in the multinuclei neural network, which has not been solved in previous NoC studies. At the single neuron level, cost-efficient conductance-based neuron models are proposed, resulting in the average utilization of 95% less memory resources and 100% less DSP resources for multiplier-less realization, which is the foundation of the large-scale realization. An analysis of the modified models is conducted, including investigation of bifurcation behaviors and ionic dynamics, demonstrating the required range of dynamics with a more reduced resource cost. The proposed LaCSNN system is shown to outperform the alternative state-of-the-art approaches previously used to implement the large-scale spiking neural network, and enables a broad range of potential applications due to its real-time computational power.

15.
Sci Rep ; 7: 40152, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28065938

RESUMEN

Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.


Asunto(s)
Corteza Cerebral/fisiopatología , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Tálamo/fisiopatología , Sistemas de Computación , Humanos , Potenciales de la Membrana , Vías Nerviosas/fisiopatología
16.
Neural Netw ; 94: 220-238, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28806716

RESUMEN

Modeling and implementation of the nonlinear neural system with physiologically plausible dynamic behaviors are considerably meaningful in the field of computational neuroscience. This study introduces a novel hardware platform to investigate the dynamical behaviors within the nonlinear subthalamic nucleus-external globus pallidus system. In order to reduce the implementation complexities, a hardware-oriented conductance-based subthalamic nucleus (STN) model is presented, which can reproduce accurately the dynamical characteristics of biological conductance-based STN cells. The accuracy of the presented design is ensured by the investigation of the dynamical properties including bifurcation analysis and phase portraits. Hardware implementation on a field-programmable gate array (FPGA) demonstrates that the proposed digital system can mimic the relevant biological characteristics with higher performance, which means the resource cost is cut down and the computational efficiency is improved by introducing the multiplier-less techniques including novel "shift MUL" approach and piecewise linear approximation. The central pattern generator (CPG) coupled by the presented system is also investigated, which can be applied as an embedded intelligent system in the field of neuro-robotic engineering.


Asunto(s)
Globo Pálido/fisiología , Modelos Neurológicos , Redes Neurales de la Computación , Núcleo Subtalámico/fisiología , Humanos
17.
Neural Netw ; 71: 62-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26318085

RESUMEN

The basal ganglia (BG) comprise multiple subcortical nuclei, which are responsible for cognition and other functions. Developing a brain-machine interface (BMI) demands a suitable solution for the real-time implementation of a portable BG. In this study, we used a digital hardware implementation of a BG network containing 256 modified Izhikevich neurons and 2048 synapses to reliably reproduce the biological characteristics of BG on a single field programmable gate array (FPGA) core. We also highlighted the role of Parkinsonian analysis by considering neural dynamics in the design of the hardware-based architecture. Thus, we developed a multi-precision architecture based on a precise analysis using the FPGA-based platform with fixed-point arithmetic. The proposed embedding BG network can be applied to intelligent agents and neurorobotics, as well as in BMI projects with clinical applications. Although we only characterized the BG network with Izhikevich models, the proposed approach can also be extended to more complex neuron models and other types of functional networks.


Asunto(s)
Ganglios Basales/fisiopatología , Redes Neurales de la Computación , Enfermedad de Parkinson/fisiopatología , Algoritmos , Interfaces Cerebro-Computador , Sistemas de Computación , Computadores , Humanos , Modelos Estadísticos , Neuronas , Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA