Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Intervalo de año de publicación
1.
Small ; 20(10): e2306085, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875668

RESUMEN

Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.

2.
Chemistry ; 30(20): e202303943, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288675

RESUMEN

Modulating metal-metal and metal-support interactions is one of the potent tools for augmenting catalytic performance. Herein, highly active Co/VN nanoparticles are well dispersed on three-dimensional porous carbon nanofoam (Co/VN@NC) with the assistance of dicyandiamide. Studies certify that the consequential disordered carbon substrate reinforces the confinement of electrons, while the coupling of diverse components optimizes charge redistribution among species. Besides, theoretical analyses confirm that the regulated electron configuration can significantly tune the binding strength between the active sites and intermediates, thus optimizing reaction energy barriers. Therefore, Co/VN@NC exhibits a competitive potential difference (ΔE, 0.65 V) between the half-wave potential of ORR and OER potential at 10 mA cm-2, outperforming Pt/C+RuO2 (0.67 V). Further, catalyst-based aqueous/flexible ZABs present superior performances with peak power densities of 156 and 85 mW cm-2, superior to Pt/C-based counterparts (128 and 73 mW cm-2). This research provides a pivotal foundation for the evolution of bifunctional catalysts in the energy sector.

3.
Inorg Chem ; 63(15): 7045-7052, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569164

RESUMEN

Doping metals and constructing heterostructures are pivotal strategies to enhance the electrocatalytic activity of metal-organic frameworks (MOFs). Nevertheless, effectively designing MOF-based catalysts that incorporate both doping and multiphase interfaces poses a significant challenge. In this study, a one-step Co-doped and Co3O4-modified Ni-MOF catalyst (named Ni NDC-Co/CP) with a thickness of approximately 5.0 nm was synthesized by a solvothermal-assisted etching growth strategy. Studies indicate that the formation of the Co-O-Ni-O-Co bond in Ni NDC-Co/CP was found to facilitate charge density redistribution more effectively than the Co-O-Ni bimetallic synergistic effect in NiCo NDC/CP. The designating Ni NDC-Co/CP achieved superior oxygen evolution reaction (OER) activity (245 mV @ 10 mA cm-2) and robust long stability (100 h @ 100 mA cm-2) in 1.0 M KOH. Furthermore, the Ni NDC-Co/CP(+)||Pt/C/CP(-) displays pregnant overall water splitting performance, achieving a current density of 10 mA cm-2 at an ultralow voltage of 1.52 V, which is significantly lower than that of commercial electrolyzer using Pt/C and IrO2 electrode materials. In situ Raman spectroscopy elucidated the transformation of Ni NDC-Co to Ni(Co)OOH under an electric field. This study introduces a novel approach for the rational design of MOF-based OER electrocatalysts.

4.
Inorg Chem ; 63(4): 2015-2023, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38230912

RESUMEN

A high-performance and reusable nonnoble metal catalyst for catalyzing sodium borohydride (NaBH4) hydrolysis to generate H2 is heralded as a nuclear material for the fast-growing hydrogen economy. Boron vacancy serves as a flexible defect site that can effectively regulate the catalytic hydrolysis performance. Herein, we construct a uniformly dispersed and boron vacancy-rich nonnoble metal Co2B-Fe2B catalyst via the hard template method. The optimized Co2B-Fe2B exhibits superior performance toward NaBH4 hydrolysis, with a high hydrogen generation rate (5315.8 mL min-1 gcatalyst-1), relatively low activation energy (35.4 kJ mol-1), and remarkable cycling stability, outperforming the majority of reported catalysts. Studies have shown that electron transfer from Fe2B to Co2B, as well as abundant boron defects, can effectively modulate the charge carrier concentration of Co2B-Fe2B catalysts. Density functional theory calculations confirm that the outer electron cloud density of Co2B is higher than that of Fe2B, among which Co2B with high electron cloud density can selectively adsorb BH4- ions, while the electron-deficient Fe2B is favorable for capturing H2O molecules, therefore synergistically promoting the catalytic NaBH4 hydrolysis to produce H2.

5.
Tohoku J Exp Med ; 262(3): 157-162, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-37940563

RESUMEN

Pulmonary fibrosis (PF) is the major complication and death-related factor of acute respiratory distress syndrome (ARDS). This study evaluated the significance of miR-141-3p in ARDS and its complication of PF aiming to identify a potential biomarker for screening ARDS and predicting the occurrence of PF. A total of 137 ARDS patients and 69 healthy individuals were enrolled in this study and the serum samples were collected from all participants. The serum miR-141-3p levels were analyzed by polymerase chain reaction. The significance of miR-141-3p in the diagnosis and development of ARDS, and the occurrence of PF was evaluated by receiver operating curve, Chi-square test, and logistic regression analysis. MiR-141-3p was downregulated in ARDS patients and showed significant potential in its diagnosis. Reduced miR-141-3p was significantly associated with the increasing Murray and APACHEII score and the occurrence of PF in ARDS patients. MiR-141-3p, Murray score, and APACHEII score were identified as risk factors for the occurrence of PF in ARDS, and miR-141-3p was also found to be downregulated in ARDS patients with PF. Additionally, miR-141-3p could discriminate ARDS patients with PF and without PF, and was closely associated with the decreased total lung capacity, carbon monoxide diffusing capacity, and forced vital capacity of ARDS patients with PF. Downregulated miR-141-3p served as a biomarker for ARDS screening disease onset and indicating the severity. Reduced miR-141-3p was also identified as a risk factor for PF in ARDS patients and was associated with the severe progression of PF.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/genética , Pronóstico , Curva ROC , Síndrome de Dificultad Respiratoria/complicaciones , MicroARNs/genética , Biomarcadores
6.
Chemistry ; 29(13): e202203207, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469422

RESUMEN

Developing a highly efficient bifunctional catalyst for hydrolysis of metal hydrides and spontaneous hydrogen evolution reaction (HER) is essential for substituting conventional fuels for H2 production. Herein, Ru-cluster-modified Co3 B-Co(OH)2 supported on nickel foam (Ru/Co3 B-Co(OH)2 @NF) is constructed by electroless deposition, calcination and chemical reduction. The catalyst exhibits an excellent hydrogen generation rate (HGR) of 4989 mL min-1 g c a t a l y s t - 1 ${{{\rm g}}_{catalyst}^{-1}}$ and good reusability, superior to most previously reported catalysts. Besides, Ru/Co3 B-Co(OH)2 @NF displays a prominent hydrogen evolution reaction catalytic capability with a low overpotential of 153.0 mV at 100 mA cm-2 (50.5 mV at 10 mA cm-2 ), a small Tafel slope of 40.0 mV dec-1 and long-term stability (100 h@10 mA cm-2 ) in 1.0 M KOH. The excellent catalytic H2 generation capacity benefits from the rapid charge transfer promoted by metallic Co3 B, the synergistic catalytic effect of Co3 B-Co(OH)2 and Ru clusters, and the unique composite structure favorable for solute transport and gas emission.

7.
Chemistry ; 29(56): e202301521, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37435858

RESUMEN

The development of hydrogen evolution reaction (HER) catalysts with high performance under large current density is still a challenge. Introducing P vacancies in heterostructure is an appealing strategy to enhance HER kinetics. This study investigates a CoP-FeP heterostructure catalyst with abundant P vacancies (Vp-CoP-FeP/NF) on nickel foam (NF), which was prepared using dipping and phosphating treatment. The optimized Vp-CoP-FeP catalyst exerted prominent HER catalytic capability, requiring an ultra-low overpotential (58 mV @ 10 mA cm-2 ) and displaying robust durability (50 h @ 200 mA cm-2 ) in 1.0 M KOH solution. Furthermore, the catalyst demonstrated superior overall water splitting activity as cathode, demanding only cell voltage of 1.76 V at 200 mA cm-2 , outperforming Pt/C/NF(-) || RuO2 /NF(+) . The catalyst's outstanding performance can be attributed to the hierarchical structure of porous nanosheets, abundant P vacancies, and synergistic effect between CoP and FeP components, which promote water dissociation and H* adsorption and desorption, thereby synergically accelerating HER kinetics and enhancing HER activity. This study demonstrates the potential of HER catalysts with phosphorus-rich vacancies that can work under industrial-scale current density, highlighting the importance of developing durable and efficient catalysts for hydrogen production.

8.
Inorg Chem ; 62(33): 13284-13292, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37542458

RESUMEN

Developing low-cost, efficient, and stable oxygen reduction reaction (ORR) electrocatalysts is crucial for the commercialization of energy conversion devices such as metal-air batteries. In this study, we report a Mn-doped Zn metal-organic framework-derived porous N-doped carbon composite (30-ZnMn-NC) as a high-performance ORR catalyst. 30-ZnMn-NC exhibits excellent electrocatalytic activity, demonstrating a kinetic current density of 9.58 mA cm-2 (0.8 V) and a half-wave potential of 0.83 V, surpassing the benchmark Pt/C and most of the recently reported non-noble metal-based catalysts. Moreover, the assembled zinc-air battery with 30-ZnMn-NC demonstrates high peak power densities of 207 and 66.3 mW cm-2 in liquid and flexible batteries, respectively, highlighting its potential for practical applications. The excellent electrocatalytic activity of 30-ZnMn-NC is attributed to its unique porous structure, the strong electronic interaction between metal Zn/Mn and adjacent N-doped carbon, as well as the bimetallic Mn/Zn-N active sites, which synergistically promote faster reaction kinetics. This work offers a controllable design strategy for efficient electrocatalysts with porous structures and bimetallic active sites, which can significantly enhance the performance of energy conversion devices.

9.
Inorg Chem ; 62(22): 8719-8728, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37220415

RESUMEN

Developing efficient electrocatalysts toward hydrogen oxidation and evolution reactions (HER/HOR) in alkaline electrolytes is essential for realizing renewable hydrogen technologies. Herein, we demonstrate that the introduction of dual-active species such as Mo and P (Pt/Mo,P@NC) can effectively regulate the surface electronic structure of platinum (Pt) and significantly improve the HOR/HER performance. The optimized Pt/Mo,P@NC exhibits remarkable catalytic activity, achieving a normalized exchange current density of 2.89 mA cm-2 and a mass activity of 2.3 mA µgPt-1, which are approximately 2.2 and 13.5 times higher than those of the state-of-the-art Pt/C catalyst, respectively. Moreover, it performs an impressive HER performance with an overpotential of 23.4 mV at 10 mA cm-2, which is lower than most documented alkaline electrocatalysts. Experimental results reveal that the modifying effect of Mo and P optimizes the adsorption of H and OH on Pt/Mo,P@NC, resulting in an outstanding catalytic performance. This work has significant theoretical and practical significance for developing a novel and highly efficient catalyst for bifunctional hydrogen electrocatalysis.

10.
Chemistry ; 28(60): e202201784, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35934676

RESUMEN

Metal-organic frameworks (MOFs) have been considered as potential oxygen evolution reaction (OER) electrocatalysts owning to their ultra-thin structure, adjustable composition, high surface area, and high porosity. Here, we designed and fabricated a vanadium-doped nickel organic framework (V1-x -Nix MOF) system by using a facile two-step solvothermal method on nickel foam (NF). The doping of vanadium remarkably elevates the OER activity of V1-x -Nix MOF, thus demonstrating better performance than the corresponding single metallic Ni-MOF, NiV-MOF and RuO2 catalysts at high current density (>400 mA cm-2 ). V0.09 -Ni0.91 MOF/NF provides a low overpotential of 235 mV and a small Tafel slope of 30.3 mV dec-1 at a current density of 10 mA cm-2 . More importantly, a water-splitting device assembled with Pt/C/NF and V0.09 -Ni0.91 MOF/NF as cathode and anode yielded a cell voltage of 1.96 V@1000 mA cm-2 , thereby outperforming the-state-of-the-art RuO2 (+) ||Pt/C(-) . Our work sheds new insight on preparing stable, efficient OER electrocatalysts and a promising method for designing various MOF-based materials.

11.
BMC Cardiovasc Disord ; 22(1): 17, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081907

RESUMEN

BACKGROUND: The aim of this study was to investigate the effects of Resveratrol (RSV) in rats with dilated cardiomyopathy (DCM). METHODS: Porcine cardiac myosin was used to set up rat model with DCM. RSV (10 mg/kg in RSV-L group and 50 mg/kg in RSV-H group) or vehicle was administered to rats with DCM once daily from the 28th day till the 90th day after the first immunization. Cardiac function of rats was evaluated by echocardiographic analysis. The deposition of fibrous tissues in the hearts was evaluated by Masson and picrosirius red staining. The mRNA levels of collagen type I (Col I), collagen type III (Col III) and silence information regulator 1 (Sirt1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction of Sirt1 with Smad3 was revealed by coimmunoprecipitation. RESULTS: The heart weight, heart weight/body weight ratio, left ventricular end diastolic diameter (LVEDD) and left ventricular end systolic diameter (LVESD) were significantly increased in rats with DCM, and attenuated by RSV. RSV also positively decreased fibrosis, and the expression of Col I and Col III in the myocardium. The Sirt1 mRNA was significantly decreased in myosin-immunized hearts and was positively increased by RSV. The Sirt1 combined with Smad3 directly. Acetylation of Smad3 (Ac-Smad3) was significantly increased in DCM and was markedly decreased by RSV. CONCLUSION: RSV effectively ameliorated myocardial fibrosis and improved cardiac function by regulating Sirt1/Smad3 deacetylation pathway in rat model with DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Regulación de la Expresión Génica , Miocardio/patología , ARN/genética , Resveratrol/farmacología , Sirtuina 1/genética , Proteína smad3/genética , Animales , Biopsia , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Inhibidores Enzimáticos/farmacología , Fibrosis/diagnóstico , Fibrosis/prevención & control , Masculino , Sirtuina 1/biosíntesis , Proteína smad3/biosíntesis , Porcinos
12.
Int J Phytoremediation ; 24(10): 1071-1080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34783608

RESUMEN

Uranium (U) is difficult to be transported from roots to leaves, but it has been reported to inhabit photosynthesis in leaves, so how does this work? In the present study, the effects of U (0-25 µM) on the development and photosynthesis in V. faba seedlings were studied under hydroponics. The results showed that U significantly inhibited the growth and development of V. faba plants, including decreased biomass, water content, lateral root number and root activity. U also led to a large accumulation of reactive oxygen species (ROS) in the leaves which affects leaf structural traits (e.g., decreased leaf area and chlorophyll a content). When U concentration was 25 µM, the net photosynthetic rate (Pn) and transpiration rate (Tr) were inhibited, which were only 66.53% and 41.89% of the control, respectively. Further analysis showed that the stomatal density of leaves increased with the increase of U concentration, while the stomatal aperture and stomatal conductance (Gs) were on the contrary. The results of chlorophyll fluorescence showed that the non-photochemical quenching coefficient (NPQ) increased and the electron transfer rate (ETR) decreased after U exposure, but fortunately, photosystem II (PSII) suffered little damage overall. In conclusion, the accumulation of U in the roots inhibited the root activity, resulting in water shortage in the plants. To prevent water loss, leaves have to regulated stomatal closure at the cost of weakening photosynthesis. These results provide a new insight into the mechanism by which U affects plant photosynthesis.


Asunto(s)
Clorofila , Uranio , Biodegradación Ambiental , Clorofila/farmacología , Clorofila A/farmacología , Fotosíntesis , Hojas de la Planta , Agua/farmacología , Agua/fisiología
13.
Nano Lett ; 21(19): 8160-8165, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34543039

RESUMEN

Airborne particular matter (PM) pollution is an increasing global issue and alternative sources of filter fibers are now an area of significant focus. Compared with relatively mature hazardous gas treatments, state of the art high-efficiency PM filters still lack thermal decomposition ability for organic PM pollutants, such as soot from coal-fired power plants and waste-combustion incinerators, resulting in frequent replacement, high cost, and second-hand pollution. In this manuscript, we propose a bottom-up synthesis method to make the first all-thermal-catalyst air filter (ATCAF). Self-assembled from ∼50 nm diameter TiO2 fibers, ATCAF could not only capture the combustion-generated PM pollutants with >99.999% efficiency but also catalyze the complete decomposition of the as-captured hydrocarbon pollutants at high temperature. It has the potential of in situ eliminating the PM pollutants from burning of hydrocarbon materials leveraging the burning heat.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Catálisis , Calor , Centrales Eléctricas
14.
Chemistry ; 26(70): 16923-16931, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32930448

RESUMEN

Developing a bifunctional catalyst with low cost and high catalytic performance in NaBH4 hydrolysis for H2 generation and selective reduction of nitroaromatics will make a significant impact in the field of sustainable energy and water purification. Herein, a low-loading homogeneously dispersed Pd oxide-rich Co3 O4 polyhedral catalyst (PdO-Co3 O4 ) with concave structure is reported by using a metal-organic framework (MOF)-templated synthesis method. The results show that the PdO-Co3 O4 catalyst has an exceptional turnover frequency (3325.6 molH2 min-1 molPd -1 ), low activation energy (43.2 kJ mol-1 ), and reasonable reusability in catalytic H2 generation from NaBH4 hydrolysis. Moreover, the optimized catalyst also shows excellent catalytic performance in the NaBH4 selective reduction of 4-nitrophenol to 4-aminiphenol with a high first-order reaction rate of approximately 1.31 min-1 . These excellent catalytic properties are mainly ascribed to the porous concave structure, monodispersed Pd oxide, as well as the unique synergy between PdO and Co3 O4 species, which result in a large specific surface area, high conductivity, and fast solute transport and gas emissions.

15.
BMC Cardiovasc Disord ; 20(1): 430, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004000

RESUMEN

BACKGROUND: This meta-analysis aimed to compare the effects of prasugrel and ticagrelor on high (HTPR) and low on-treatment platelet reactivity (LTPR) in patients with acute coronary syndrome (ACS). METHODS: Eligible studies were retrieved from PubMed, Embase, and the Cochrane Library. HTPR and LTPR were evaluated on the basis of the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI) and P2Y12 reaction units (PRUs). HTPR and LTPR were analyzed using risk ratios (RRs) and their 95% confidence intervals (CIs). Weighted mean difference (WMD) and 95% CI were used to calculate the pooled effect size of platelet reactivity (PR). RESULTS: Fourteen eligible studies were obtained, which included 2629 patients treated with ticagrelor (n = 1340) and prasugrel (n = 1289). The pooled results showed that the prasugrel-treated patients had higher platelet reactivity than the ticagrelor-treated patients (PRU: WMD = - 32.26; 95% CI: - 56.48 to - 8.76; P < 0.01; VASP-PRI: WMD = - 9.61; 95% CI: - 14.63 to - 4.60; P = 0.002). No significant difference in HTPR based on PRU was identified between the ticagrelor and prasugrel groups (P = 0.71), whereas a lower HTPR based on VASP-PRI was found in the ticagrelor-treated patients than in the prasugrel-treated patients (RR = 0.30; 95% CI: 0.12-0.75; P = 0.010). In addition, the results showed a lower LTPR was observed in the prasugrel group than in the ticagrelor group (RR = 1.40; 95% CI: 1.08-1.81; P = 0.01). CONCLUSIONS: Prasugrel might enable higher platelet reactivity than ticagrelor. Ticagrelor could lead to a decrease in HTPR and increase in LTPR. However, this result was only obtained in pooled observational studies. Several uncertainties such as the nondeterminancy of the effectiveness of ticagrelor estimated using VASP-PRI or the definition of HTPR (a high or modifiable risk factor) might have affected our results.


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Plaquetas/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Clorhidrato de Prasugrel/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Ticagrelor/uso terapéutico , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Anciano , Plaquetas/metabolismo , Moléculas de Adhesión Celular/sangre , Femenino , Humanos , Masculino , Proteínas de Microfilamentos/sangre , Persona de Mediana Edad , Fosfoproteínas/sangre , Inhibidores de Agregación Plaquetaria/efectos adversos , Pruebas de Función Plaquetaria , Clorhidrato de Prasugrel/efectos adversos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Receptores Purinérgicos P2Y12/sangre , Receptores Purinérgicos P2Y12/efectos de los fármacos , Ticagrelor/efectos adversos , Resultado del Tratamiento
16.
Neurocrit Care ; 30(1): 81-87, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29995185

RESUMEN

BACKGROUND: Prognostic significance of serum calcium level in patients with intracerebral hemorrhage is not well studied. The aim of the study was to identify if a relationship between admission serum calcium level and prognosis exists in patients with intracerebral hemorrhage. METHODS: A total of 1262 confirmed intracerebral hemorrhage patients were included. Demographic data, medical history, medicine history, laboratory data, imaging data, clinical score, and progress note were collected from their medical records. All images of head computed tomography were reanalyzed. Ninety-day prognosis was recorded, and poor outcome was defined as death or major disability caused by intracerebral hemorrhage. RESULTS: During the 90-day follow-up period, 504 patients died and 226 patients suffered from major disability. Death and major disability were combined as poor prognosis. The remaining 532 patients showed good prognosis. Admission serum calcium level was lower in the patients with poor prognosis than in the patients with good prognosis (2.41 ± 0.23 mmol/l, 2.55 ± 0.26 mmol/l, P < 0.001). Admission INR and hematoma volume were higher in the patients with poor prognosis than in the patients with good prognosis (INR: 1.74 ± 0.29, 1.70 ± 0.29, P = 0.029; hematoma volume: 11.6 ± 4.4 ml, 10.7 ± 4.1 ml, P < 0.001). There was no difference in admission APTT level between the two prognosis groups (28.4 ± 5.6 s, 27.8 ± 5.4 s, P = 0.056). A multivariate COX regression analysis reported that admission serum calcium level ≤ 2.41 mmol/l was associated with the increased risk of poor prognosis (death or major disability) in the patients (HR 1.45, 95% CI 1.32-1.60). In addition, there was a significant linear association of serum calcium level with coagulation function markers and hematoma volume on admission (APTT: r = - 0.091, P = 0.001; INR: r = - 0.063, P = 0.025; hematoma volume: r = -0.108, P < 0.001). CONCLUSIONS: Admission serum calcium level might be a prognostic marker for intracerebral hemorrhage. Potential mechanism involved calcium-induced coagulation function abnormality.


Asunto(s)
Calcio/sangre , Hemorragia Cerebral/sangre , Hemorragia Cerebral/diagnóstico , Evaluación de Resultado en la Atención de Salud , Anciano , Biomarcadores/sangre , Hemorragia Cerebral/mortalidad , Hemorragia Cerebral/terapia , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Admisión del Paciente , Pronóstico
17.
Small ; 12(40): 5530-5537, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27578319

RESUMEN

The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx ) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

18.
Acta Haematol ; 132(2): 247-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24862625

RESUMEN

BACKGROUND/AIMS: Nattokinase is a serine protease produced by Bacillus subtilis during the fermentation of the soybean product natto. The fibrinolytic activity and thrombolytic effects of nattokinase have been observed in vitro, but the effect in vivo has still to be researched. The objective of this study was to demonstrate the activity of nattokinase in vivo. METHODS: To establish a rat model of thrombosis, κ-carrageenan was injected subcutaneously into the toes of Sprague-Dawley (SD) rats. Histological examination confirmed thrombosis. The rats were then treated with varying doses of nattokinase and the resulting thrombolysis was histologically assessed. ELISA was used to determine the levels of the fibrin/fibrinogen degradation products (FDPs) and D-dimer, which are sensitive indices of fibrinolytic activity. Vermis kinase, a known thrombolytic agent, was used as a positive control. RESULTS: Biopsy results revealed partial thrombolysis in the tail vessels of the rats treated with nattokinase or vermis kinase. FDP and D-dimer levels were higher in rats treated with high-dose nattokinase than in those treated with saline. No difference in FDP or D-dimer levels was observed between rats treated with high-dose nattokinase and those treated with vermis kinase. CONCLUSIONS: Both the histological and physiological evidence from this study indicate that nattokinase exerts thrombolytic effects in vivo.


Asunto(s)
Fibrinolíticos/uso terapéutico , Subtilisinas/uso terapéutico , Trombosis/tratamiento farmacológico , Animales , Carragenina/toxicidad , Evaluación Preclínica de Medicamentos , Endopeptidasas/farmacología , Endopeptidasas/uso terapéutico , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Fibrinolíticos/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Subtilisinas/farmacología , Trombosis/inducido químicamente , Trombosis/patología
19.
Immunol Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865000

RESUMEN

The present research aimed to investigate the effects and mechanisms of microRNA (miR)-141-3p on pulmonary fibrosis of acute respiratory distress syndrome (ARDS). A rat ARDS model was established by the intratracheal drip of 10 mg/kg lipopolysaccharide (LPS). miR-141-3p and Kelch-like ECH-associated protein 1 (Keap1) expression was detected using RT-qPCR assay. Inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissues were measured with enzyme-linked immunosorbent assay (ELISA). Lung fibrosis was evaluated using Masson's trichrome staining and hydroxyproline assay kits. Tissue oxidative stress marker levels were assessed by a commercial kit. Protein variations in the EMT pathway and Keap1/nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway were investigated by Western blot analysis. Targeting relationship verified by dual-luciferase reporter assay. The expression of miR-141-3p was significantly upregulated in LPS-induced ARDS rats, while Keap1 was downregulated. Overexpression of miR-141-3p decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, superoxide dismutase (SOD), and glutathione (GSH) while elevating malondialdehyde (MDA) expression in LPS-induced ARDS rats. Elevation of miR-141-3p reduced fibrosis scores, enhanced E-cadherin protein expression, and decreased vimentin and α-SMA protein expression in LPS-induced ARDS rats. This elevation of miR-141-3p also upregulated Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxido-reductase-1 (NQO1) proteins levels. Moreover, Keap1 overexpression reversed the inhibitory effects of miR-141-3p on LPS-triggered inflammation, oxidative stress, and fibrosis. miR-141-3p may attenuate inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Our study provides new ideas for the treatment of ARDS.

20.
ACS Nano ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913650

RESUMEN

Modulating the energy barrier of reaction intermediates to surmount sluggish kinetics is an utterly intriguing strategy for amplifying the oxygen reduction reaction. Herein, a Cu3P/CoP hybrid is incorporated on hollow porous N-doped carbon nanospheres via dopamine self-polymerization and high-temperature treatment. The resultant Cu3P/CoP@NC showcases a favorable mass activity of 4.41 mA mg-1 and a kinetic current density of 2.38 mA cm-2. Strikingly, the catalyst endows the aqueous Zn-air battery (ZAB) with a large power density of 209.0 mW cm-2, superb cyclability over 317 h, and promising application prospects in flexible ZAB. Theoretical simulations reveal that Cu functions as a modulator to modify the free energy of intermediates and adsorbs the O2 on the Co sites, hence rushing the reaction kinetics. The open and hydrophilic hollow spherical mesoporous structure provides unimpeded channels for reactant diffusion and electrolyte penetration, whereas the exposed inner and outer surfaces can confer a plethora of accessible actives sites. This research establishes a feasible design concept to tune catalytic activity for non-noble metal materials by construction of a rational nanoframework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA