Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9770-9781, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38781163

RESUMEN

Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.


Asunto(s)
Compuestos Férricos , Compuestos Férricos/química
2.
Environ Sci Technol ; 58(26): 11637-11648, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38822815

RESUMEN

Lithium (Li) is an important resource that drives sustainable mobility and renewable energy. Its demand is projected to continue to increase in the coming decades. However, the risk of Li pollution has also emerged as a global concern. Here, we investigated the pollution characteristics, sources, exposure levels, and associated health risks of Li in the Jinjiang River basin, the largest area for Li2CO3 production in China. Our results revealed the dominant role of Li extraction activities in the pollution of the river, with over 95% of dissolved Li in downstream river water being emitted from this source. Moreover, the Li concentration in aquatic plants (i.e., water hyacinth) and animals (i.e., fish) significantly increased from upstream to downstream areas, indicating a significant risk to local aquatic ecosystems. More importantly, our study found that local residents were suffering potential chronic noncarcinogenic health risks primarily from consuming contaminated water and vegetables. We also investigated the pollution characteristics of associated elements present in Li ores (e.g., Rb, Cs, Ni, and F-). By uncovering the remarkable impact of Li extraction activities on the Li content in ecosystems for the first time, our study emphasizes the importance of evaluating Li pollution from Li-related industrial activities, including mining, extraction, and recovery.


Asunto(s)
Litio , Litio/análisis , China , Contaminantes Químicos del Agua/análisis , Humanos , Ríos/química , Medición de Riesgo , Monitoreo del Ambiente , Animales
3.
Mol Biol Rep ; 51(1): 750, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874700

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a clinical syndrome characterized by pulmonary inflammation. Ultrashort wave diathermy (USWD) has been shown to be effective at in inhibiting ALI inflammation, although the underlying mechanism remains unclear. Previous studies have demonstrated that USWD generates a therapeutic thermal environment that aligns with the temperature required for heat shock protein 70 (HSP70), an endogenous protective substance. In this study, we examined the correlation between HSP70 and USWD in alleviating lung inflammation in ALI. METHODS: Forty-eight male C57BL/6 mice were randomly divided into control, model, USWD intervention (LU) 1, 2, and 3, and USWD preintervention (UL) 1, 2, and 3 groups (n = 6 in each group). The mice were pretreated with LPS to induce ALI. The UL1, 2, and 3 groups received USWD treatment before LPS infusion, while the LU1, 2, and 3 groups received USWD treatment after LPS infusion. Lung function and structure, inflammatory factor levels and HSP70 protein expression levels were detected. RESULTS: USWD effectively improved lung structure and function, and significantly reduced IL-1ß, IL-10, TGF-ß1, and TNF-α levels in both the USWD preintervention and intervention groups. However, HSP70 expression did not significantly differ across the experimental groups although the expression of TLR4 was significantly decreased, suggesting that USWD may have anti-inflammatory effects through multiple signaling pathways or that the experimental conditions should be restricted. CONCLUSIONS: Both USWD intervention and preintervention effectively reduced the inflammatory response, alleviated lung injury symptoms, and played a protective role in LPS-pretreated ALI mice. HSP70 was potentially regulated by USWD in this process, but further studies are urgently needed to elucidate the correlation and mechanism.


Asunto(s)
Lesión Pulmonar Aguda , Diatermia , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico , Ratones Endogámicos C57BL , Neumonía , Animales , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Proteínas HSP70 de Choque Térmico/metabolismo , Ratones , Masculino , Proyectos Piloto , Diatermia/métodos , Neumonía/metabolismo , Pulmón/metabolismo , Pulmón/patología , Lipopolisacáridos , Citocinas/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255764

RESUMEN

Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Monocitos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/etiología , Macrófagos , Mesalamina , Antiinflamatorios , Inflamación
5.
Br J Cancer ; 127(12): 2108-2117, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36229578

RESUMEN

BACKGROUND: Pancreatic cancer is among the most common malignant tumours, and effective therapeutic strategies are still lacking. While Corynoxine (Cory) can induce autophagy in neuronal cells, it remains unclear whether Cory has anti-tumour activities against pancreatic cancer. METHODS: Two pancreatic cancer cell lines, Patu-8988 and Panc-1, were used. Effects of Cory were evaluated by cell viability analysis, EdU staining, TUNEL assay, colony formation assay, and flow cytometry. Quantitative PCR and Western blot were performed to analyse mRNA and protein levels, respectively. In vivo anti-tumour efficacy of Cory was determined by a xenograft model. RESULTS: Cory treatment inhibited cell proliferation, induced endoplasmic reticulum (ER) stress, and triggered apoptosis in the pancreatic cancer cell lines. CHOP knockdown-mediated inhibition of ER stress alleviated the Cory-induced apoptosis but showed a limited effect on cell viability. Cory induced cell death partially via promoting reactive oxygen species (ROS) production and activating p38 signalling. Pretreatment with ROS scavenger N-acetylcysteine and p38 inhibitor SB203580 relieved the Cory-induced inhibition on cell growth. Cory remarkably blocked pancreatic tumour growth in vivo. CONCLUSIONS: Cory exerts an anti-tumour effect on pancreatic cancer primarily via ROS-p38-mediated cytostatic effects. Cory may serve as a promising therapeutic agent for pancreatic cancer.


Asunto(s)
Citostáticos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico
6.
Anal Chem ; 94(44): 15189-15197, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36301736

RESUMEN

Soot, mainly derived from incomplete combustion of fossil fuel and biomass, exists ubiquitously in different environmental matrixes. To study the detrimental effects of soot on climate, air quality, and human health, accurate quantification of soot is an important prerequisite. However, until now, quantification of soot in environmental media, especially in carbonaceous media, is still very challenging. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method for in situ imaging of soot particles in size-segregated aerosol samples collected on filter membranes. A series of round-shaped sample spots in filter membranes were selected and subjected to MS imaging analysis, enabling direct in situ quantification of soot without solvent extraction or separation. Especially, the MS imaging with serial sample spots can overcome the problems of sweet-spot in LDI-MS and inhomogeneous distribution of soot in the filter membrane, thus greatly improving the precision of quantification. The limit of detection of soot was 4 ng/m2 and the recovery was 84.4-126%. By using this method, we found that a higher soot content was present in larger-sized particulate matter than smaller-sized particles, suggesting that aerosol soot was mainly derived from primary emission sources. Furthermore, this method also shows the potential to analyze nitrate and sulfate species in PM2.5. To the best of our knowledge, it is the first method capable of simultaneous analysis of inorganic salts and soot in air samples. It represents a novel strategy for in situ quantification of aerosol soot with the advantages of high specificity, high sensitivity, separation-, solvent- and matrix-free.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Humanos , Hollín/química , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Aerosoles/análisis , Espectrometría de Masas/métodos , Solventes/análisis , Carbono/química , Monitoreo del Ambiente
7.
Environ Sci Technol ; 56(1): 155-164, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34910459

RESUMEN

During the SARS period in 2003 and COVID-19 pandemic period in 2020, unexpected severe particulate matter pollution occurred in northern China, although the anthropogenic activities and associated emissions have assumed to be reduced dramatically. This anomalistic increase in PM2.5 pollution raises a question about how source emissions impact the air quality during these pandemic periods. In this study, we investigated the stable Cu and Si isotopic compositions and typical source-specific fingerprints of PM2.5 and its sources. We show that the primary PM2.5 emissions (PM2.5 emitted directly from sources) actually had no reduction but redistribution during these pandemic periods, rather than the previous thought of being greatly reduced. This finding provided critical evidence to interpret the anomalistic PM2.5 increase during the pandemic periods in north China. Our results also suggested that both the energy structure adjustment and stringent regulations on primary emissions should be synergistically implemented in a regional scale for clean air actions in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Efectos Antropogénicos , Beijing , China , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2
8.
J Immunol ; 204(3): 518-530, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843958

RESUMEN

Tolerogenic dendritic cells (tolDCs) have received much attention because of their capacity to restore immune homeostasis. RNA interference techniques have been used in several studies to generate tolDCs by inactivating certain molecules that regulate DC maturation and immunologic function. BAFF is a key B cell survival factor that is not only essential for B cell function but also T cell costimulation, and DCs are the major source of BAFF. In this study, we determined whether BAFF gene silencing in mature DCs could lead to a tolerogenic phenotype as well as the potential therapeutic effect of BAFF-silenced DCs on collagen-induced arthritis (CIA) in mice. Meanwhile, CRISPR/Cas9-mediated BAFF-/- DC2.4 cells were generated to verify the role of BAFF in DC maturation and functionality. BAFF-silenced DCs and BAFF-/- DC2.4 cells exhibited an immature phenotype and functional state. Further, the transplantation of BAFF-silenced DCs significantly alleviated CIA severity in mice, which correlated with a reduction in Th17 populations and increased regulatory T cells. In vitro, BAFF-silenced DCs promoted Foxp3 mRNA and IL-10 expression but inhibited ROR-γt mRNA and IL-17A expression in CD4+ T cells. Together, BAFF-silenced DCs can alleviate CIA, partly by inducing Foxp3+ regulatory T cells and suppressing Th17 subsets. Collectively, BAFF plays an important role in interactions between DCs and T cells, which might be a promising genetic target to generate tolDCs for autoimmune arthritis treatment.


Asunto(s)
Artritis Experimental/inmunología , Factor Activador de Células B/metabolismo , Células Dendríticas/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Sistemas CRISPR-Cas , Línea Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica , Inmunomodulación , Masculino , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , ARN Interferente Pequeño/genética
9.
Transgenic Res ; 30(6): 781-797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34529208

RESUMEN

Tryptophan 2,3-dioxygenase (TDO2) was an initial rate-limiting enzyme of the kynurenine (Kyn) pathway in tryptophan (Trp) metabolism. We undertook this study to determine a comprehensive analysis of TDO2 expression in immune cells and assess the characterization of immune cell phenotype in TDO2 knockout mice. The expression of TDO2 in various tissues of DBA/1 mice was detected by quantitative real-time PCR (qPCR) and immunohistochemistry. Both flow cytometry and immunofluorescence were used to analyze the expression of TDO2 in immune cells. Furthermore, TDO2 knockout (KO) mice were generated by CRISPR/Cas9 technology to detect immune cell phenotype. TDO2 protein level in liver was tested by western blot. High-performance liquid chromatography was used to detect the level of Trp and Kyn. Flow cytometry was used to test the proportions of splenic lymphocyte subsets in wild-type (WT) and TDO2 KO mice. We found that TDO2 was expressed in various tissues and immune cells, and TDO2 staining was mainly observed in the cytoplasm of cells. There was no difference in the development of immune cells between TDO2 KO mice and WT mice, including T cells, B cells, memory B cells, plasma cells, dendritic cells, and natural killer cells. Interestingly, the reduced M1/M2 ratio was observed in the peritoneal macrophages of TDO2 KO mice. Taken together, these findings enriched the known expression profile of TDO2, especially its expression in immune cells. Our study suggested that TDO2-mediated Trp-Kyn metabolism pathway might be involved in the immune response.


Asunto(s)
Quinurenina , Triptófano Oxigenasa , Animales , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/genética , Quinurenina/metabolismo , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Fenotipo , Triptófano/genética , Triptófano/metabolismo , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo
10.
Environ Sci Technol ; 55(4): 2440-2451, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33535745

RESUMEN

There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas , Contaminantes Atmosféricos/análisis , Humanos , Pulmón , Hollín/toxicidad
11.
Environ Sci Technol ; 54(15): 9274-9284, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32644802

RESUMEN

Nanosized magnetite is a highly toxic material due to its strong ability to generate reactive oxygen species in vivo, and the presence of magnetite NPs in the brain has been linked with aging and neurodegenerative diseases such as Alzheimer's disease. Recently, magnetite pollution nanoparticles (NPs) were found to be present in the human brain, heart, and blood, which raises great concerns about the health risks of airborne magnetite NPs. Here, we report the abundant presence and chemical multifingerprints (including high-resolution structural and elemental fingerprints) of magnetite NPs in the urban atmosphere. We establish a methodology for high-efficiency retrieving and accurate quantification of airborne magnetite NPs. We report the occurrence levels (annual mean concentration 75.5 ± 33.2 ng m-3 in Beijing with clear season variations) and the pollution characteristics of airborne magnetite NPs. Based on the chemical multifingerprints of the NPs, we identify and estimate the contributions of the major emission sources for airborne magnetite NPs. We also give an assessment of human exposure risks of airborne magnetite NPs. Our findings support the identification of airborne magnetite NPs as a threat to human health.


Asunto(s)
Nanopartículas de Magnetita , Atmósfera , Beijing , Óxido Ferrosoférrico , Humanos
12.
Environ Sci Technol ; 54(12): 7126-7135, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32428398

RESUMEN

Since the implementation of the "Air Pollution Prevention and Control Action Plan" (APPCAP) in 2013, the air quality in China has been greatly improved but still much exceeded the WHO guideline limit. Here we employed a novel approach, two-dimensional Si fingerprints, including stable Si isotopic composition (δ30Si and Si abundance (Si%), to investigate the annual variations in both primary and secondary sources of PM2.5 in Beijing during the APPCAP period (2013-2017). The δ30Si and Si% values were used as tracers to reflect the variations in primary and secondary sources, respectively. For primary sources, the mean δ30Si value of PM2.5 in 2015-2017 (>-0.5‰) was significantly more positive than that of 2013 (-1.24‰), indicating a dramatic decline in the contribution of 30Si-depleted sources (i.e., coal burning and industrial emission). For secondary sources, the mean Si% of PM2.5 increased from 1.2% in 2013 to 4.6% in 2017, suggesting a large decrease in the secondary aerosol contribution from 83% to 42%. It is worth noting that we found the 30Si-depleted sources showed a rebound trend during 2015-2017. This study reveals the responses of anthropogenic emission sources under strong regulation policies and provides a reference for future policymaking in Beijing and other polluted regions and countries.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis , Silicio
13.
Acta Pharmacol Sin ; 41(11): 1387-1394, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32884075

RESUMEN

Total glycoside of paeony (TGP) has been widely used to treat inflammation and immune diseases in China. Paeoniflorin (Pae) is the major active component of TGP. Although TGP has few adverse drug reactions, the slow onset and low bioavailability of Pae limit its clinical use. Enhanced efficacy without increased toxicity is pursued in developing new agents for inflammation and immune diseases. As a result, paeoniflorin-6'-O-benzene sulfonate (CP-25) derived from Pae, is developed in our group, and exhibits superior bioavailability and efficacy than Pae. Here we describe the development process and research advance on CP-25. The pharmacokinetic parameters of CP-25 and Pae were compared in vivo and in vitro. CP-25 was also compared with the first-line drugs methotrexate, leflunomide, and hydroxychloroquine in their efficacy and adverse effects in arthritis animal models and experimental Sjögren's syndrome. We summarize the regulatory effects of CP-25 on inflammation and immune-related cells, elucidate the possible mechanisms, and analyze the therapeutic prospects of CP-25 in inflammation and immune diseases, as well as the diseases related to its potential target G-protein-coupled receptor kinases 2 (GRK2). This review suggests that CP-25 is a promising agent in the treatment of inflammation and immune diseases, which requires extensive investigation in the future. Meanwhile, this review provides new ideas about the development of anti-inflammatory immune drugs.


Asunto(s)
Antiinflamatorios/uso terapéutico , Glucósidos/uso terapéutico , Factores Inmunológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Monoterpenos/uso terapéutico , Síndrome de Sjögren/tratamiento farmacológico , Animales , Antiinflamatorios/farmacocinética , Línea Celular Tumoral , Glucósidos/farmacocinética , Humanos , Factores Inmunológicos/farmacocinética , Linfocitos/efectos de los fármacos , Sistema Mononuclear Fagocítico/efectos de los fármacos , Monoterpenos/farmacocinética
14.
J Environ Sci (China) ; 91: 105-116, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172959

RESUMEN

Inhaled atmospheric fine particulate matter (PM2.5) includes soluble and insoluble fractions, and each fraction can interact with cells and cause adverse effects. PM2.5 samples were collected in Jinan, China, and the soluble and insoluble fractions were separated. According to physiochemical characterization, the soluble fraction mainly contains water-soluble ions and organic acids, and the insoluble fraction mainly contains kaolinite, calcium carbonate and some organic carbon. The interaction between PM2.5 and model cell membranes was examined with a quartz crystal microbalance with dissipation (QCM-D) to quantify PM2.5 attachment on membranes and membrane disruption. The cytotoxicity of the total PM2.5 and the soluble and insoluble fractions, was investigated. Negatively charged PM2.5 can adhere to the positively charged membranes and disrupt them. PM2.5 also adheres to negatively charged membranes but does not cause membrane rupture. Therefore, electrostatic repulsion does not prevent PM2.5 attachment, but electrostatic attraction induces remarkable membrane rupture. The human lung epithelial cell line A549 was used for cytotoxicity assessment. The detected membrane leakage, cellular swelling and blebbing indicated a cell necrosis process. Moreover, the insoluble PM2.5 fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction. The levels of reactive oxygen species (ROS) enhanced by the two fractions were not significantly different. The findings provide more information to better understand the mechanism of PM2.5 cytotoxicity and the effect of PM2.5 solubility on cytotoxicity.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado , China , Humanos , Pulmón/efectos de los fármacos , Especies Reactivas de Oxígeno
15.
Environ Sci Technol ; 53(5): 2840-2851, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30742439

RESUMEN

Particulate air pollution caused by human activities has drawn global attention due to its potential health risks. Considering the inevitable contact of inhaled airborne fine particulate matter (PM) with plasma, the hematological effects of PM are worthy of study. In this study, the potential effect of PM on hematological homeostasis through triggering the crosstalk of the kallikrein-kinin system (KKS), complement, and coagulation systems in plasma was investigated. The ex vivo, in vitro, and in vivo KKS activation assays confirmed that PM samples could efficiently cause the cascade activation of key zymogens in the KKS, wherein the particles coupled with lipopolysaccharide attachment provided substantial contribution. The binding of Hageman factor XII (FXII) with PM samples and its subsequent autoactivation initiated this process. The crucial elements in the complement cascade, including complement 3 (C3) and complement 5 (C5), and coagulation system (prothrombin) were also found to be actively induced by PM exposure, which was regulated by the interplay of KKS activation. The data provided solid evidence on hematological effects of airborne PM through inducing the activation of the KKS, complement, and coagulation systems, which would be valuable in the risk assessment on air-pollution-related cardiovascular diseases.


Asunto(s)
Calicreínas , Cininas , Coagulación Sanguínea , Factor XII , Humanos , Sistema Calicreína-Quinina
16.
Acta Pharmacol Sin ; 40(8): 1029-1039, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30643209

RESUMEN

Paeoniflorin-6'-O-benzene sulfonate (CP-25) is a novel compound derived from paeoniflorin that has been demonstrated to have therapeutic effects in a rat model of rheumatoid arthritis (RA). However, the underlying mechanism has not been elucidated to date. We explored this mechanism in the present study by treating rats with adjuvant arthritis (AA) with CP-25. We found that the membrane EP4 protein level was downregulated; whereas, GRK2 was upregulated, in fibroblast-like synoviocyte (FLS)s of AA rats. Prostaglandin (PGE)2 stimulated FLS proliferation and enhanced the membrane EP4 receptor protein level; the latter was reversed by the administration of an EP4 receptor agonist, whereas the membrane GRK2 protein level gradually increased. The changes in the EP4 receptor and GRK2 expression were enhanced by TNF-α, and the former was accompanied by an alteration in the cyclic (c)AMP level. The EP4 receptor agonist stimulation increased the association between GRK2 and the EP4 receptor. GRK2 knockdown abrogated the abnormalities in FLS proliferation. The CP-25 treatment (100 mg/kg) suppressed joint inflammation with an efficacy that was similar to that of methotrexate. This finding was associated with EP4 upregulation and GRK2 downregulation in FLSs. Thus, GRK2 plays an important role in the abnormal FLS proliferation observed in AA possibly by promoting EP4 receptor desensitization and decreasing the cAMP level. Our results demonstrate that CP-25 has therapeutic potential for the treatment of human RA via GRK2 regulation.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Glucósidos/uso terapéutico , Monoterpenos/uso terapéutico , Sinoviocitos/efectos de los fármacos , Animales , Articulación del Tobillo/patología , Artritis Experimental/patología , Artritis Reumatoide/patología , Proliferación Celular/efectos de los fármacos , Dinoprostona/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Técnicas de Silenciamiento del Gen , Masculino , Ratas Sprague-Dawley , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
17.
Inflammopharmacology ; 27(5): 997-1010, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30771056

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6'-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Artritis Experimental/tratamiento farmacológico , Células Dendríticas/efectos de los fármacos , Dinoprostona/metabolismo , Glucósidos/farmacología , Monoterpenos/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Adyuvantes Farmacéuticos/efectos adversos , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/metabolismo , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , AMP Cíclico/metabolismo , Células Dendríticas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
18.
Hum Brain Mapp ; 39(5): 2121-2132, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29389047

RESUMEN

Traditional task-evoked brain activations are based on detection and estimation of signal change from the mean signal. By contrast, the low-frequency steady-state brain response (lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presentation and its harmonics. Compared to the activity at these resonant frequencies, brain responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is defined by power change, we hypothesize using Parseval's theorem that the power change reflects brain signal variability rather than the change of mean signal. Using a face recognition task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics (0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band (<0.1 Hz), suggesting a multifrequency energy reallocation. The consistency of power and variability was demonstrated by the high correlation (r > .955) of their spatial distribution and brain-behavior relationship at all frequency bands. Additionally, the reallocation of finite energy was observed across various brain regions and frequency bands, forming a particular spatiotemporal pattern. Overall, results from this study strongly suggest that frequency-specific power and variability may measure the same underlying brain activity and that these results may shed light on different mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of energy reallocation induced by cognitive tasks.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Cara , Oxígeno/sangre , Reconocimiento en Psicología/fisiología , Adolescente , Adulto , Encéfalo/irrigación sanguínea , Femenino , Análisis de Fourier , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Tiempo de Reacción/fisiología , Adulto Joven
20.
Environ Sci Technol ; 52(3): 1088-1095, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29284089

RESUMEN

Airborne particulate pollution is a critical environmental problem affecting human health and sustainable development. Understanding of the sources of aerosol particles is of extreme importance for regional air pollution control. Here we show that natural Si isotopic signature can be used as a new tool to elucidate the sources of fine particulate matter (PM2.5). Through the analysis of Si isotopic composition (δ30Si) of PM2.5 and its primary sources collected in a typical pollution region - Beijing, we recognized the direct source tracing ability of Si isotopes for PM2.5. The different primary sources of PM2.5 had different Si isotopic signatures. The δ30Si value of PM2.5 ranged from -1.99‰ to -0.01‰ and showed a distinct seasonal trend (isotopically lighter in spring/winter and heavier in summer/autumn). The variations in δ30Si of PM2.5 revealed that Si-isotopically light sources were important sources for Beijing's severe haze pollution and that coal burning was a major cause for the aggregating haze weather in spring/winter in Beijing. We also analyzed several typical haze events by using Si isotopic signatures. As the first study on the natural Si isotopes in the atmospheric environment, this study may reveal an important tool to advance the particulate pollution research and control.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Beijing , China , Monitoreo del Ambiente , Humanos , Isótopos , Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA