Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(8): e112401, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36811145

RESUMEN

The maintenance of sodium/potassium (Na+ /K+ ) homeostasis in plant cells is essential for salt tolerance. Plants export excess Na+ out of cells mainly through the Salt Overly Sensitive (SOS) pathway, activated by a calcium signal; however, it is unknown whether other signals regulate the SOS pathway and how K+ uptake is regulated under salt stress. Phosphatidic acid (PA) is emerging as a lipid signaling molecule that modulates cellular processes in development and the response to stimuli. Here, we show that PA binds to the residue Lys57 in SOS2, a core member of the SOS pathway, under salt stress, promoting the activity and plasma membrane localization of SOS2, which activates the Na+ /H+ antiporter SOS1 to promote the Na+ efflux. In addition, we reveal that PA promotes the phosphorylation of SOS3-like calcium-binding protein 8 (SCaBP8) by SOS2 under salt stress, which attenuates the SCaBP8-mediated inhibition of Arabidopsis K+ transporter 1 (AKT1), an inward-rectifying K+ channel. These findings suggest that PA regulates the SOS pathway and AKT1 activity under salt stress, promoting Na+ efflux and K+ influx to maintain Na+ /K+ homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas , Estrés Salino , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Homeostasis , Ácidos Fosfatidicos/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Salino/genética , Sodio/metabolismo
2.
Plant Cell ; 35(1): 279-297, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36149299

RESUMEN

The salt overly sensitive (SOS) pathway is essential for maintaining sodium ion homeostasis in plants. This conserved pathway is activated by a calcium signaling-dependent phosphorylation cascade. However, the identity of the phosphatases and their regulatory mechanisms that would deactivate the SOS pathway remain unclear. In this study, we demonstrate that PP2C.D6 and PP2C.D7, which belong to clade D of the protein phosphatase 2C (PP2C) subfamily in Arabidopsis thaliana, directly interact with SOS1 and inhibit its Na+/H+ antiporter activity under non-salt-stress conditions. Upon salt stress, SOS3-LIKE CALCIUM-BINDING PROTEIN8 (SCaBP8), a member of the SOS pathway, interacts with the PP2Cs and suppresses their phosphatase activity; simultaneously, SCaBP8 regulates the subcellular localization of PP2C.D6 by releasing it from the plasma membrane. Thus, we identified two negative regulators of the SOS pathway that repress SOS1 activity under nonstress conditions. These processes set the stage for the activation of SOS1 by the kinase SOS2 to achieve plant salt tolerance. Our results suggest that reversible phosphorylation/dephosphorylation is crucial for the regulation of the SOS pathway, and that calcium sensors play dual roles in activating/deactivating SOS2 and PP2C phosphatases under salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteína Fosfatasa 2C/metabolismo , Calcio/metabolismo , Fosforilación
3.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119239

RESUMEN

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fosforilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Luz , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Virol ; 98(1): e0135923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38084959

RESUMEN

Phage therapy has shown great promise for the treatment of multidrug-resistant bacterial infections. However, the lack of a thorough and organized understanding of phage-body interactions has limited its clinical application. Here, we administered different purified phages (Salmonella phage SE_SZW1, Acinetobacter phage AB_SZ6, and Pseudomonas phage PA_LZ7) intravenously to healthy animals (rats and monkeys) to evaluate the phage-induced host responses and phage pharmacokinetics with different intravenous (IV) doses in healthy animals. The plasma and the organs were sampled after different IV doses to determine the phage biodistribution, phage-induced cytokines, and antibodies. The potential side effects of phages on animals were assessed. A non-compartment model revealed that the plasma phage titer gradually decreased over time following a single dose. Repeated doses resulted in a 2-3 Log10 decline of the plasma phage titer at 5 min compared to the first dose, regardless of the type of phage administered in rats. Host innate immune responses were activated including splenic enlargement following repeated doses. Phage-specific neutralization antibodies in animals receiving phages were detected. Similar results were obtained from monkeys. In conclusion, the mammalian bodies were well-tolerant to the administered phages. The animal responses to the phages and the phage biodistribution profiles could have a significant impact on the efficacy of phage therapy.IMPORTANCEPhage therapy has demonstrated potential in addressing multidrug-resistant bacterial infections. However, an insufficient understanding of phage-host interactions has impeded its broader clinical application. In our study, specific phages were administered intravenously (IV) to both rats and monkeys to elucidate phage-host interactions and evaluate phage pharmacokinetics (PK). Results revealed that with successive IV administrations, there was a decrease in plasma phage concentrations. Concurrently, these administrations elicited both innate and adaptive immune responses in the subjects. Notably, the observed immune responses and PK profiles exhibited variation contingent upon the phage type and the mammalian host. Despite these variations, the tested mammals exhibited a favorable tolerance to the IV-administered phages. This underscores the significance of comprehending these interactions for the optimization of phage therapy outcomes.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Animales , Humanos , Ratas , Infecciones Bacterianas/terapia , Bacteriófagos/fisiología , Mamíferos , Fagos Pseudomonas , Distribución Tisular , Farmacorresistencia Bacteriana Múltiple
5.
Plant Cell ; 34(1): 477-494, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34850207

RESUMEN

Stomatal movement is critical for plant responses to environmental changes and is regulated by the important signaling molecule phosphatidylinositol 3-phosphate (PI3P). However, the molecular mechanism underlying this process is not well understood. In this study, we show that PI3P binds to stomatal closure-related actin-binding protein1 (SCAB1), a plant-specific F-actin-binding and -bundling protein, and inhibits the oligomerization of SCAB1 to regulate its activity on F-actin in guard cells during stomatal closure in Arabidopsis thaliana. SCAB1 binds specifically to PI3P, but not to other phosphoinositides. Treatment with wortmannin, an inhibitor of phosphoinositide kinase that generates PI3P, leads to an increase of the intermolecular interaction and oligomerization of SCAB1, stabilization of F-actin, and retardation of F-actin reorganization during abscisic acid (ABA)-induced stomatal closure. When the binding activity of SCAB1 to PI3P is abolished, the mutated proteins do not rescue the stability and realignment of F-actin regulated by SCAB1 and the stomatal closure in the scab1 mutant. The expression of PI3P biosynthesis genes is consistently induced when the plants are exposed to drought and ABA treatments. Furthermore, the binding of PI3P to SCAB1 is also required for vacuolar remodeling during stomatal closure. Our results illustrate a PI3P-regulated pathway during ABA-induced stomatal closure, which involves the mediation of SCAB1 activity in F-actin reorganization.


Asunto(s)
Actinas/química , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Microfilamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Estomas de Plantas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Microfilamentos/metabolismo
6.
J Reprod Dev ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910127

RESUMEN

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.

7.
Ecotoxicol Environ Saf ; 279: 116490, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795417

RESUMEN

With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.


Asunto(s)
Microplásticos , Transcriptoma , Microplásticos/toxicidad , Transcriptoma/efectos de los fármacos , Plantas/efectos de los fármacos , Metabolómica , Nanopartículas/toxicidad
8.
J Integr Plant Biol ; 66(3): 303-329, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38108117

RESUMEN

Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).


Asunto(s)
Arabidopsis , Productos Agrícolas , Productos Agrícolas/genética , Arabidopsis/fisiología , Glycine max , Tolerancia a la Sal/genética , Salinidad
9.
Trends Biochem Sci ; 44(10): 885-896, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31256982

RESUMEN

Transgelin-2 has been regarded as an actin-binding protein that induces actin gelation and regulates actin cytoskeleton. However, transgelin-2 has recently been shown to relax the myosin cytoskeleton of the airway smooth muscle cells by acting as a receptor for extracellular metallothionein-2. From a clinical perspective, these results support transgelin-2 as a promising therapeutic target for diseases such as cancer and asthma. The inhibition of transgelin-2 prevents actin gelation and thereby cancer cell proliferation, invasion, and metastasis. Conversely, the activation of transgelin-2 with specific agonists relaxes airway smooth muscles and reduces pulmonary resistance in asthma. Here, we review new studies on the biochemical properties of transgelin-2 and discuss their clinical implications for the treatment of immune, oncogenic, and respiratory disorders.


Asunto(s)
Asma/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Neoplasias/metabolismo , Actinas/metabolismo , Animales , Asma/tratamiento farmacológico , Asma/patología , Proliferación Celular/efectos de los fármacos , Humanos , Proteínas de Microfilamentos/agonistas , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas Musculares/agonistas , Proteínas Musculares/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología
10.
Curr Issues Mol Biol ; 45(7): 5914-5934, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37504290

RESUMEN

Soil salinization inhibits plant growth and seriously restricts food security and agricultural development. Excessive salt can cause ionic stress, osmotic stress, and ultimately oxidative stress in plants. Plants exclude excess salt from their cells to help maintain ionic homeostasis and stimulate phytohormone signaling pathways, thereby balancing growth and stress tolerance to enhance their survival. Continuous innovations in scientific research techniques have allowed great strides in understanding how plants actively resist salt stress. Here, we briefly summarize recent achievements in elucidating ionic homeostasis, osmotic stress regulation, oxidative stress regulation, and plant hormonal responses under salt stress. Such achievements lay the foundation for a comprehensive understanding of plant salt-tolerance mechanisms.

11.
Curr Issues Mol Biol ; 46(1): 171-182, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248315

RESUMEN

The regulation of intracellular pH in yeast (Saccharomyces cerevisiae) cells is critical for cell function and viability. In yeast, protons (H+) can be excreted from the cell by plasma membrane ATPase PMA1 and pumped into vacuoles by vacuolar H+-ATPase. Because PMA1 is critical to the survival of yeast cells, it is unknown whether other compensatory components are involved in pH homeostasis in the absence of PMA1. To elucidate how intracellular pH is regulated independently of PMA1, we employed a screening approach by exposing the yeast haploid deletion mutant library (ver 4.0) to the selective plant plasma membrane H+-ATPase inhibitor PS-1, which we previously reported. After repeated screenings and verification, we identified two proteins, Aly1 and Aly2, that play a role in the regulation of intracellular pH when PMA1 is deficient. Our research uncovers a new perspective on the regulation of intracellular pH related to PMA1 and also preliminarily reveals a role for Aly1 and Aly2 in the regulation of intracellular pH.

12.
J Exp Bot ; 74(17): 5394-5404, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37326597

RESUMEN

Abscisic acid (ABA) is an essential phytohormone for plant responses to complex and variable environmental conditions. The molecular basis of the ABA signaling pathway has been well elucidated. SnRK2.2 and SnRK2.3 are key protein kinases participating in ABA responses, and the regulation of their activity plays an important role in signaling. Previous mass spectroscopy analysis of SnRK2.3 suggested that ubiquitin and homologous proteins may bind directly to the kinase. Ubiquitin typically recruits E3 ubiquitin ligase complexes to target proteins, marking them for degradation by the 26S proteasome. Here, we show that SnRK2.2 and SnRK2.3 interact with ubiquitin but are not covalently attached to the protein, resulting in the suppression of their kinase activity. The binding between SnRK2.2, SnRK2.3, and ubiquitin is weakened under prolonged ABA treatment. Overexpression of ubiquitin positively regulated the growth of seedlings exposed to ABA. Our results thus demonstrate a novel function for ubiquitin, which negatively regulates ABA responses by directly inhibiting SnRK2.2 and SnRK2.3 kinase activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismo
13.
Theor Appl Genet ; 136(5): 97, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027047

RESUMEN

KEY MESSAGE: AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis. Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.


Asunto(s)
Arachis , Fitomejoramiento , Humanos , Arachis/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética
14.
Eur Radiol ; 33(5): 3425-3434, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36897349

RESUMEN

OBJECTIVES: To investigate the value of contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine for predicting clinical outcomes in patients with chronic liver disease (CLD). METHODS: Three hundred and fourteen CLD patients who underwent gadobenate dimeglumine-enhanced hepatic magnetic resonance imaging were stratified into three groups: nonadvanced CLD (n = 116), compensated advanced CLD (n = 120), and decompensated advanced CLD (n = 78) groups. The liver-to-portal vein contrast ratio (LPC) and liver-spleen contrast ratio (LSC) at the hepatobiliary phase were measured. The value of LPC for predicting hepatic decompensation and transplant-free survival was assessed using Cox regression analysis and Kaplan-Meier analysis. RESULTS: The diagnostic performance of LPC was significantly better than LSC in evaluating the severity of CLD. During a median follow-up period of 53.0 months, the LPC was a significant predictor for hepatic decompensation (p < 0.001) in patients with compensated advanced CLD. The predictive performance of LPC was higher than that of the model for end-stage liver disease score (p = 0.006). With the optimal cut-off value, patients with LPC ≤ 0.98 had a higher cumulative incidence of hepatic decompensation than patients with LPC > 0.98 (p < 0.001). The LPC was also a significant predictive factor for transplant-free survival in patients with compensated advanced CLD (p = 0.007) and those with decompensated advanced CLD (p = 0.002). CONCLUSIONS: Contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine is a valuable imaging biomarker for predicting hepatic decompensation and transplant-free survival in CLD patients. KEY POINTS: • The liver-to-portal vein contrast ratio (LPC) significantly outperformed liver-spleen contrast ratio in evaluating the severity of chronic liver disease. • The LPC was a significant predictor for hepatic decompensation in patients with compensated advanced chronic liver disease. • The LPC was a significant predictor for transplant-free survival in patients with compensated and those with decompensated advanced chronic liver disease.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Hepatopatías , Compuestos Organometálicos , Humanos , Vena Porta/diagnóstico por imagen , Medios de Contraste/farmacología , Gadolinio DTPA , Enfermedad Hepática en Estado Terminal/diagnóstico por imagen , Enfermedad Hepática en Estado Terminal/cirugía , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Meglumina , Imagen por Resonancia Magnética/métodos , Cirrosis Hepática
15.
Plant Cell ; 31(6): 1367-1384, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30962395

RESUMEN

Saline-alkali soil is a major environmental constraint impairing plant growth and crop productivity. In this study, we identified a Ca2+ sensor/kinase/plasma membrane (PM) H+-ATPase module as a central component conferring alkali tolerance in Arabidopsis (Arabidopsis thaliana). We report that the SCaBP3 (SOS3-LIKE CALCIUM BINDING PROTEIN3)/CBL7 (CALCINEURIN B-LIKE7) loss-of-function plants exhibit enhanced stress tolerance associated with increased PM H+-ATPase activity and provide fundamental mechanistic insights into the regulation of PM H+-ATPase activity. Consistent with the genetic evidence, interaction analyses, in vivo reconstitution experiments, and determination of H+-ATPase activity indicate that interaction of the Ca2+ sensor SCaBP3 with the C-terminal Region I domain of the PM H+-ATPase AHA2 (Arabidopsis thaliana PLASMA MEMBRANE PROTON ATPASE2) facilitates the intramolecular interaction of the AHA2 C terminus with the Central loop region of the PM H+-ATPase to promote autoinhibition of H+-ATPase activity. Concurrently, direct interaction of SCaPB3 with the kinase PKS5 (PROTEIN KINASE SOS2-LIKE5) stabilizes the kinase-ATPase interaction and thereby fosters the inhibitory phosphorylation of AHA2 by PKS5. Consistently, yeast reconstitution experiments and genetic analysis indicate that SCaBP3 provides a bifurcated pathway for coordinating intramolecular and intermolecular inhibition of PM H+-ATPase. We propose that alkaline stress-triggered Ca2+ signals induce SCaBP3 dissociation from AHA2 to enhance PM H+-ATPase activity. This work illustrates a versatile signaling module that enables the stress-responsive adjustment of plasma membrane proton fluxes.


Asunto(s)
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Nucleic Acids Res ; 48(D1): D545-D553, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31504765

RESUMEN

GMrepo (data repository for Gut Microbiota) is a database of curated and consistently annotated human gut metagenomes. Its main purpose is to facilitate the reusability and accessibility of the rapidly growing human metagenomic data. This is achieved by consistently annotating the microbial contents of collected samples using state-of-art toolsets and by manual curation of the meta-data of the corresponding human hosts. GMrepo organizes the collected samples according to their associated phenotypes and includes all possible related meta-data such as age, sex, country, body-mass-index (BMI) and recent antibiotics usage. To make relevant information easier to access, GMrepo is equipped with a graphical query builder, enabling users to make customized, complex and biologically relevant queries. For example, to find (1) samples from healthy individuals of 18 to 25 years old with BMIs between 18.5 and 24.9, or (2) projects that are related to colorectal neoplasms, with each containing >100 samples and both patients and healthy controls. Precomputed species/genus relative abundances, prevalence within and across phenotypes, and pairwise co-occurrence information are all available at the website and accessible through programmable interfaces. So far, GMrepo contains 58 903 human gut samples/runs (including 17 618 metagenomes and 41 285 amplicons) from 253 projects concerning 92 phenotypes. GMrepo is freely available at: https://gmrepo.humangut.info.


Asunto(s)
Bases de Datos Genéticas , Microbioma Gastrointestinal , Metagenoma , Metagenómica/métodos , Programas Informáticos , Genes Bacterianos , Genoma Humano , Humanos , Anotación de Secuencia Molecular
17.
J Integr Plant Biol ; 64(6): 1229-1245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35352470

RESUMEN

Auxin is unique among plant hormones in that its function requires polarized transport across plant cells. A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H+ gradient across the plasma membrane (PM) established by PM H+ -adenosine triphosphatases (ATPases). However, a classical genetic approach by mutations in PM H+ -ATPase members did not result in the ablation of polar auxin distribution, possibly due to functional redundancy in this gene family. To confirm the crucial role of PM H+ -ATPases in the polar auxin transport model, we employed a chemical genetic approach. Through a chemical screen, we identified protonstatin-1 (PS-1), a selective small-molecule inhibitor of PM H+ -ATPase activity that inhibits auxin transport. Assays with transgenic plants and yeast strains showed that the activity of PM H+ -ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport. We propose that PS-1 can be used as a tool to interrogate the function of PM H+ -ATPases. Our results support the chemiosmotic model in which PM H+ -ATPase itself plays a fundamental role in polar auxin transport.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo
18.
Am J Physiol Endocrinol Metab ; 320(5): E951-E966, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719588

RESUMEN

Type 2 diabetes mellitus (T2DM) results in compromised bone microstructure and quality, and subsequently increased risks of fractures. However, it still lacks safe and effective approaches resisting T2DM bone fragility. Pulsed electromagnetic fields (PEMFs) exposure has proven to be effective in accelerating fracture healing and attenuating osteopenia/osteoporosis induced by estrogen deficiency. Nevertheless, whether and how PEMFs resist T2DM-associated bone deterioration remain not fully identified. The KK-Ay mouse was used as the T2DM model. We found that PEMF stimulation with 2 h/day for 8 wk remarkably improved trabecular bone microarchitecture, decreased cortical bone porosity, and promoted trabecular and cortical bone material properties in KK-Ay mice. PEMF stimulated bone formation in KK-Ay mice, as evidenced by increased serum levels of bone formation (osteocalcin and P1NP), enhanced bone formation rate, and increased osteoblast number. PEMF significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. PEMF exerted beneficial effects on osteoblast- and osteocyte-related gene expression in the skeleton of KK-Ay mice. Nevertheless, PEMF exerted no effect on serum biomarkers of bone resorption (TRAcP5b and CTX-1), osteoclast number, or osteoclast-specific gene expression (TRAP and cathepsin K). PEMF upregulated gene expression of canonical Wnt ligands (including Wnt1, Wnt3a, and Wnt10b), but not noncanonical Wnt5a. PEMF also upregulated skeletal protein expression of downstream p-GSK-3ß and ß-catenin in KK-Ay mice. Moreover, PEMF-induced improvement in bone microstructure, mechanical strength, and bone formation in KK-Ay mice was abolished after intragastric administration with the Wnt antagonist ETC-159. Together, our results suggest that PEMF can improve bone microarchitecture and quality by enhancing the biological activities of osteoblasts and osteocytes, which are associated with the activation of the Wnt/ß-catenin signaling pathway. PEMF might become an effective countermeasure against T2DM-induced bone deterioration.NEW & NOTEWORTHY PEMF improved trabecular bone microarchitecture and suppressed cortical bone porosity in T2DM KK-Ay mice. It attenuated T2DM-induced detrimental consequence on trabecular and cortical bone material properties. PEMF resisted bone deterioration in KK-Ay mice by enhancing osteoblast-mediated bone formation. PEMF also significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. The therapeutic potential of PEMF on T2DM-induced bone deterioration was associated with the activation of Wnt/ß-catenin signaling.


Asunto(s)
Enfermedades Óseas Metabólicas/terapia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Magnetoterapia , Osteoporosis/terapia , Animales , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Huesos/efectos de la radiación , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Campos Electromagnéticos , Glucosa/metabolismo , Magnetoterapia/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteogénesis/fisiología , Osteogénesis/efectos de la radiación , Osteoporosis/etiología , Osteoporosis/genética , Osteoporosis/metabolismo , Vía de Señalización Wnt/efectos de la radiación , beta Catenina/metabolismo
19.
BMC Plant Biol ; 21(1): 63, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33494700

RESUMEN

BACKGROUND: Shoot architecture is fundamentally crucial to crop growth and productivity. As a key component of shoot architecture, plant height is known to be controlled by both genetic and environmental factors, though specific details remain scarce. RESULTS: In this study, 308 representative soybean lines from a core collection and 168 F9 soybean progeny were planted at distinct field sites. The results demonstrated the presence of significant genotype × environment interaction (G × E) effects on traits associated with plant height in a natural soybean population. In total, 19 loci containing 51 QTLs (quantitative trait locus) for plant height were identified across four environments, with 23, 13 and 15 being QTLs for SH (shoot height), SNN (stem node number) and AIL (average internode length), respectively. Significant LOD ranging from 2.50 to 16.46 explained 2.80-26.10% of phenotypic variation. Intriguingly, only two loci, Loc11 and Loc19-1, containing 20 QTLs, were simultaneously detected across all environments. Results from Pearson correlation analysis and PCA (principal component analysis) revealed that each of the five agro-meteorological factors and four soil properties significantly affected soybean plant height traits, and that the corresponding QTLs had additive effects. Among significant environmental factors, AD (average day-length), AMaT (average maximum temperature), pH, and AN (available nitrogen) had the largest impacts on soybean plant height. Therefore, in spite of uncontrollable agro-meteorological factors, soybean shoot architecture might be remolded through combined efforts to produce superior soybean genetic materials while also optimizing soil properties. CONCLUSIONS: Overall, the comprehensive set of relationships outlined herein among environment factors, soybean genotypes and QTLs in effects on plant height opens new avenues to explore in work aiming to increase soybean yield through improvements in shoot architecture.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Ambiente , Genotipo , Fenotipo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Glycine max/anatomía & histología , Glycine max/crecimiento & desarrollo , Glycine max/fisiología
20.
FASEB J ; 34(2): 3037-3050, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908035

RESUMEN

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Asunto(s)
Envejecimiento , Magnetoterapia , Osteoporosis , Esqueleto , Vibración , Animales , Masculino , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Osteoporosis/terapia , Ratas , Ratas Sprague-Dawley , Esqueleto/metabolismo , Esqueleto/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA