RESUMEN
Objective To explore the association between lipid profiles and left ventricular hypertrophy in a Chinese general population. Methods We conducted a retrospective observational study to investigate the relationship between lipid markers [including triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL-cholesterol, apolipoprotein A-I, apolipoprotein B, lipoprotein[a], and composite lipid profiles] and left ventricular hypertrophy. A total of 309,400 participants of two populations (one from Beijing and another from nationwide) who underwent physical examinations at different health management centers between 2009 and 2018 in China were included in the cross-sectional study. 7,475 participants who had multiple physical examinations and initially did not have left ventricular hypertrophy constituted a longitudinal cohort to analyze the association between lipid markers and the new-onset of left ventricular hypertrophy. Left ventricular hypertrophy was measured by echocardiography and defined as an end-diastolic thickness of the interventricular septum or left ventricle posterior wall > 11 mm. The Logistic regression model was used in the cross-sectional study. Coxmodel and Coxmodel with restricted cubic splines were used in the longitudinal cohort. Results In the cross-sectional study, for participants in the highest tertile of each lipid marker compared to the respective lowest, triglycerides [odds ratio (OR): 1.250, 95%CI: 1.060 to 1.474], HDL-cholesterol (OR: 0.780, 95%CI: 0.662 to 0.918), and lipoprotein(a) (OR: 1.311, 95%CI: 1.115 to 1.541) had an association with left ventricular hypertrophy. In the longitudinal cohort, for participants in the highest tertile of each lipid marker at the baseline compared to the respective lowest, triglycerides [hazard ratio (HR): 3.277, 95%CI: 1.720 to 6.244], HDL-cholesterol (HR: 0.516, 95%CI: 0.283 to 0.940), non-HDL-cholesterol (HR: 2.309, 95%CI: 1.296 to 4.112), apolipoprotein B (HR: 2.244, 95%CI: 1.251 to 4.032) showed an association with new-onset left ventricular hypertrophy. In the Coxmodel with forward stepwise selection, triglycerides were the only lipid markers entered into the final model. Conclusion Lipids levels, especially triglycerides, are associated with left ventricular hypertrophy. Controlling triglycerides level potentiate to be a strategy in harnessing cardiac remodeling but deserve to be further investigated.
Asunto(s)
Colesterol , Hipertrofia Ventricular Izquierda , Biomarcadores , HDL-Colesterol , Estudios Transversales , Humanos , Hipertrofia Ventricular Izquierda/epidemiología , Estudios Retrospectivos , TriglicéridosRESUMEN
Background: Numerous benefits of green tea have been reported. However, the effects of green tea on cognitive function remain disputable and the mechanism is still unclear. Objective: To investigate the relationship of green tea consumption with cognitive function and related blood biomarkers among Chinese middle-aged and elderly people. Methods: A total of 264 participants aged 50-70 years old were enrolled from Zhongnan Hospital of Wuhan University. They were interviewed about green tea consumption patterns and underwent neuropsychological tests covering five main cognitive domains to assess cognition including Montreal Cognitive Assessment (MoCA) and the other 10 scales. Then we detected serum oxidative stress biomarkers including Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione Peroxidase (GPx), Glutathione Reductase (GR), and Alzheimer's disease (AD) markers including ß-amyloid (Aß)40, Aß42, and phosphorylated tau-181 (pTau181). Results: In the tea-consuming group, the MoCA scores (P = 0.000), Hopkins Verbal Learning Test (HVLT) immediate recall (P = 0.012) and delayed recall (P = 0.013) were significantly higher while Trail Making Test-B (P = 0.005) and Victoria Stroop test interference (P = 0.000) were lower. In terms of oxidative stress markers, the tea-consuming group had lower serum MDA levels (P = 0.002) and higher serum SOD (P = 0.005) and GPx (P = 0.007) levels. In terms of AD markers, serum pTau181 (P < 0.000), Aß42 (P = 0.019) and total Aß levels (P = 0.034) but not serum Aß40 levels, were lower in the tea-consuming group. In the logistic regression analysis, there was a significant negative correlation between green tea consumption and cognitive impairment (OR = 0.26, 95 % CI 0.13 0.52 for high group). Conclusion: Regular green tea consumption is associated with better cognitive function among Chinese middle-aged and elderly people, mainly reflected in memory and executive function. It may achieve protective effects by reducing AD-related pathology and improving anti-oxidative stress capacity and higher levels of tea consumption have a stronger protective effect.
RESUMEN
OBJECTIVE: To evaluate sleep disturbances of Chinese frontline medical workers (FMW) under the outbreak of coronavirus disease 2019 (COVID-19), and make a comparison with non-FMW. METHODS: The medical workers from multiple hospitals in Hubei Province, China, volunteered to participate in this cross-sectional study. An online questionnaire, including Pittsburgh Sleep Quality Index (PSQI), Athens Insomnia Scale (AIS) and Visual Analogue Scale (VAS), was used to evaluate sleep disturbances and mental status. Sleep disturbances were defined as PSQI>6 points or/and AIS>6 points. We compared the scores of PSQI, AIS, anxiety and depression VAS, as well as prevalence of sleep disturbances between FMW and non-FMW. RESULTS: A total of 1306 subjects (801 FMW and 505 non-FMW) were enrolled. Compared to non-FMW, FMW had significantly higher scores of PSQI (9.3 ± 3.8 vs 7.5 ± 3.7; P < 0.001; Cohen's d = 0.47), AIS (6.9 ± 4.3 vs 5.3 ± 3.8; P < 0.001; Cohen's d = 0.38), anxiety (4.9 ± 2.7 vs 4.3 ± 2.6; P < 0.001; Cohen's d = 0.22) and depression (4.1 ± 2.5 vs 3.6 ± 2.4; P = 0.001; Cohen's d = 0.21), as well as higher prevalence of sleep disturbances according to PSQI > 6 points (78.4% vs 61.0%; relative risk [RR] = 1.29; P < 0.001) and AIS > 6 points (51.7% vs 35.6%; RR = 1.45; P < 0.001). CONCLUSION: FMW have higher prevalence of sleep disturbances and worse sleep quality than non-FMW. Further interventions should be administrated for FMW, aiming to maintain their healthy condition and guarantee their professional performance in the battle against COVID-19.