Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32272060

RESUMEN

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Asunto(s)
Neurogénesis/fisiología , Neuroglía/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Sistemas CRISPR-Cas/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Células Ganglionares de la Retina/fisiología
2.
Proc Natl Acad Sci U S A ; 111(1): 515-20, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24347634

RESUMEN

Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.


Asunto(s)
Encéfalo/fisiología , Tiempo de Reacción , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Electrodos , Electroencefalografía , Electrofisiología , Cuerpos Geniculados/fisiología , Masculino , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Long-Evans , Sinapsis/fisiología , Factores de Tiempo
3.
Eur J Neurosci ; 39(12): 2060-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24931049

RESUMEN

Both theoretical and experimental studies suggest that response properties in the visual system are shaped by signals in the natural environment. Recent studies showed that, in the primary visual cortex (V1), neurons preferring light decrements (OFF stimuli) outnumber those preferring light increments (ON stimuli). However, it is not clear whether the OFF-dominance in V1 neurons is related to the contrast statistics in natural images. By analysing the distribution of negative and positive contrasts in natural images at several spatial scales, we showed that optimal coding of the natural contrast signals would lead to a contrast-dependent OFF-dominant response, with a stronger degree of OFF-dominance at a higher contrast. Using bright and dark stimuli at various contrast levels to measure the receptive fields of neurons in cat V1, we found an increasing degree of OFF-dominance of the neuronal population as the contrast was increased. By modeling receptive fields exhibiting OFF- and ON-dominance, we found that contrast-dependent OFF-dominance facilitated the discrimination of stimuli with natural contrast distribution. Thus, by matching contrast-dependent OFF-dominance to the statistics of contrast distribution in natural images, V1 neurons may better discriminate contrast information in natural scenes.


Asunto(s)
Sensibilidad de Contraste/fisiología , Discriminación en Psicología/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Gatos , Electrodos Implantados , Femenino , Masculino , Modelos Neurológicos , Dinámicas no Lineales , Estimulación Luminosa/métodos
4.
Cereb Cortex ; 23(8): 1923-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22735159

RESUMEN

Visual experience can cause functional modification in the adult visual cortex; however, how cortical receptive fields (RFs) are dynamically modified by natural scene stimulation remains unclear. Here, using in vivo patch-clamp recordings from neurons in the rat primary visual cortex (V1), we showed that minutes of conditioning with natural movies could increase the similarity between cortical RF structure and the subset of movie images that depolarized the cell. This effect lasted for a few minutes in the absence of further movie stimulation. Manipulating the statistics of the movies by temporal shuffling or spatial whitening showed that the spatiotemporal correlation of the movie was important in inducing the RF modification. Furthermore, the movie-induced RF modification required the activation of N-methyl-d-aspartate receptors. Such rapid RF modification may play an important role in the dynamic coding of natural scenes.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Visual/fisiología , Campos Visuales , Animales , Ratas , Ratas Long-Evans
5.
Neurosci Bull ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801564

RESUMEN

The orbitofrontal cortex (ORB), a region crucial for stimulus-reward association, decision-making, and flexible behaviors, extensively connects with other brain areas. However, brain-wide inputs to projection-defined ORB neurons and the distribution of inhibitory neurons postsynaptic to neurons in specific ORB subregions remain poorly characterized. Here we mapped the inputs of five types of projection-specific ORB neurons and ORB outputs to two types of inhibitory neurons. We found that different projection-defined ORB neurons received inputs from similar cortical and thalamic regions, albeit with quantitative variations, particularly in somatomotor areas and medial groups of the dorsal thalamus. By counting parvalbumin (PV) or somatostatin (SST) interneurons innervated by neurons in specific ORB subregions, we found a higher fraction of PV neurons in sensory cortices and a higher fraction of SST neurons in subcortical regions targeted by medial ORB neurons. These results provide insights into understanding and investigating the function of specific ORB neurons.

6.
Cell Rep Med ; 5(6): 101566, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38759649

RESUMEN

Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.


Asunto(s)
Discinesia Inducida por Medicamentos , Globo Pálido , Levodopa , Levodopa/efectos adversos , Globo Pálido/efectos de los fármacos , Globo Pálido/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Discinesia Inducida por Medicamentos/patología , Animales , Neuronas/efectos de los fármacos , Masculino , Optogenética , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Núcleo Subtalámico/efectos de los fármacos , Núcleo Subtalámico/fisiopatología
7.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38300992

RESUMEN

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Asunto(s)
Axones , Mapeo Encefálico , Hipocampo , Neuronas , Animales , Ratones , Axones/fisiología , Axones/ultraestructura , Hipocampo/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Análisis de la Célula Individual/métodos , Red Nerviosa , Masculino , Ratones Endogámicos C57BL
8.
Neurosci Bull ; 39(4): 559-575, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36209314

RESUMEN

Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.


Asunto(s)
Refuerzo en Psicología , Recompensa , Factores de Tiempo , Animales , Ratones , Cognición , Aprendizaje , Toma de Decisiones
9.
Neurosci Bull ; 39(10): 1544-1560, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37253985

RESUMEN

The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.


Asunto(s)
Corteza Motora , Ratones , Animales , Cuerpo Estriado/fisiología , Neostriado , Neuronas/fisiología , Tiempo de Reacción
10.
Sci Transl Med ; 15(713): eabo6889, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37703352

RESUMEN

Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Animales , Ratones , Microtúbulos , Proteínas de Unión al ADN , Encéfalo , Modelos Animales de Enfermedad , Excipientes , Ratones Transgénicos
11.
Cereb Cortex ; 21(4): 964-73, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20841322

RESUMEN

Motion-in-depth causes changes in the size of retinal images in addition to producing optic flow patterns. A previous psychophysical study showed that human subjects can perceive expansion motion in texture stimuli that exhibit increases in the scale of image elements but no consistent optic flow pattern. The neural mechanisms by which the scale-change information is processed remain unknown. Here, we measured the responses of cat V1 and the lateral geniculate nucleus (LGN) neurons to a sequence of random images whose spatial frequency spectrum changed over time (i.e., average spatial scale expanded or contracted). We found that V1 neurons exhibit direction sensitivity to scale changes, with more cells preferring expansion than contraction motion. This direction sensitivity can be partly accounted for by the spectrotemporal receptive field of V1 neurons. Comparison of the direction sensitivity between V1 and LGN neurons showed that the sensitivity in V1 may originate from LGN neurons. Repetitive stimulation with expansion or contraction motion can decrease the sensitivity to the adapted direction in V1, and the effect can be transferred interocularly, suggesting that intracortical connections may be critically involved in the adaptation. Together, our results suggest that direction sensitivity to scale change in V1 may contribute to motion-in-depth processing.


Asunto(s)
Percepción de Movimiento/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Gatos , Electrofisiología , Estimulación Luminosa
12.
Nat Neurosci ; 25(4): 515-529, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361973

RESUMEN

Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.


Asunto(s)
Neuronas , Corteza Prefrontal , Animales , Axones , Encéfalo , Interneuronas , Ratones , Neuronas/fisiología , Corteza Prefrontal/fisiología
13.
Nat Neurosci ; 10(6): 772-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17468750

RESUMEN

Experience-dependent plasticity in adult visual cortex is believed to have important roles in visual coding and perceptual learning. Here we show that repeated stimulation with movies of natural scenes induces a rapid improvement in response reliability in cat visual cortex, whereas stimulation with white noise or flashed bar stimuli does not. The improved reliability can be accounted for by a selective increase in spiking evoked by preferred stimuli, and the magnitude of improvement depends on the sparseness of the response. The increase in reliability persists for at least several minutes in the absence of further movie stimulation. During this period, spontaneous spiking activity shows detectable reverberation of the movie-evoked responses. Thus, repeated exposure to natural stimuli not only induces a rapid improvement in cortical response reliability, but also leaves a 'memory trace' in subsequent spontaneous activity.


Asunto(s)
Mapeo Encefálico , Aprendizaje , Neuronas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Potenciales de Acción/fisiología , Animales , Gatos , Movimiento/fisiología , Estimulación Luminosa/métodos , Reproducibilidad de los Resultados , Campos Visuales
14.
Cell Rep ; 37(3): 109847, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686331

RESUMEN

Drinking behavior in rodents is characterized by stereotyped, rhythmic licking movement, which is regulated by the basal ganglia. It is unclear how direct and indirect pathways control the lick bout and individual spout contact. We find that inactivating D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the ventrolateral striatum (VLS) oppositely alters the number of licks in a bout. D1- and D2-MSNs exhibit different patterns of lick-sequence-related activity and different phases of oscillation time-locked to the lick cycle. On the timescale of a lick cycle, transient inactivation of D1-MSNs during tongue protrusion reduces spout contact probability, whereas transiently inactivating D2-MSNs has no effect. On the timescale of a lick bout, inactivation of D1-MSNs (D2-MSNs) causes rate increase (decrease) in a subset of basal ganglia output neurons that decrease firing during licking. Our results reveal the distinct roles of D1- and D2-MSNs in regulating licking at both coarse and fine timescales.


Asunto(s)
Conducta Animal , Neuronas Dopaminérgicas/fisiología , Conducta de Ingestión de Líquido , Vías Nerviosas/fisiología , Sustancia Negra/fisiología , Estriado Ventral/fisiología , Potenciales de Acción , Animales , Neuronas Dopaminérgicas/metabolismo , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Movimiento , Inhibición Neural , Vías Nerviosas/metabolismo , Optogenética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Conducta Estereotipada , Sustancia Negra/metabolismo , Factores de Tiempo , Lengua/inervación , Estriado Ventral/metabolismo
15.
J Neurosci ; 29(36): 11409-16, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741147

RESUMEN

The efficient coding hypothesis suggests that the early visual system is optimized to represent stimuli in the natural environment. While it is believed that LGN processing removes the redundant information of natural scenes, it is not clear whether the early visual processing can selectively amplify important signals in natural stimuli to facilitate discrimination. In this study, we examined the functional role of LGN spatiotemporal frequency tuning in the processing of natural scenes. First, we characterized the relationship between spatial and temporal frequency tuning for LGN receptive fields. We found that LGN neurons exhibit inseparable spatiotemporal frequency tuning in a manner consistent with the feature of optimal filters that can maximize information transmission of natural scenes. Second, we analyzed the spatiotemporal power spectrum of natural scenes and found that some frequencies exhibit larger variation in power across different scenes. Interestingly, the preferred frequency of ensemble LGN neurons matches the range of frequencies in which natural power spectrum varies most. Comparison of neural discrimination for natural stimuli and for artificial stimuli with similar mean power spectra but different variation structure showed that the match between LGN tuning and natural spectra variation enhances neural discrimination for natural stimuli. Our results indicate that, in addition to removing redundancy, the spatiotemporal frequency characteristics of LGN neurons can facilitate neural discrimination of natural stimuli.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Cuerpos Geniculados/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Campos Visuales/fisiología , Animales , Gatos , Tiempo de Reacción/fisiología , Factores de Tiempo , Vías Visuales/fisiología
16.
Elife ; 92020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32579113

RESUMEN

Adaptive action selection during stimulus categorization is an important feature of flexible behavior. To examine neural mechanism underlying this process, we trained mice to categorize the spatial frequencies of visual stimuli according to a boundary that changed between blocks of trials in a session. Using a model with a dynamic decision criterion, we found that sensory history was important for adaptive action selection after the switch of boundary. Bilateral inactivation of the secondary motor cortex (M2) impaired adaptive action selection by reducing the behavioral influence of sensory history. Electrophysiological recordings showed that M2 neurons carried more information about upcoming choice and previous sensory stimuli when sensorimotor association was being remapped than when it was stable. Thus, M2 causally contributes to flexible action selection during stimulus categorization, with the representations of upcoming choice and sensory history regulated by the demand to remap stimulus-action association.


Asunto(s)
Corteza Motora/fisiología , Percepción Visual/fisiología , Animales , Conducta Animal , Toma de Decisiones , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
17.
Nat Commun ; 11(1): 2784, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493971

RESUMEN

The orbitofrontal cortex (OFC) encodes expected outcomes and plays a critical role in flexible, outcome-guided behavior. The OFC projects to primary visual cortex (V1), yet the function of this top-down projection is unclear. We find that optogenetic activation of OFC projection to V1 reduces the amplitude of V1 visual responses via the recruitment of local somatostatin-expressing (SST) interneurons. Using mice performing a Go/No-Go visual task, we show that the OFC projection to V1 mediates the outcome-expectancy modulation of V1 responses to the reward-irrelevant No-Go stimulus. Furthermore, V1-projecting OFC neurons reduce firing during expectation of reward. In addition, chronic optogenetic inactivation of OFC projection to V1 impairs, whereas chronic activation of SST interneurons in V1 improves the learning of Go/No-Go visual task, without affecting the immediate performance. Thus, OFC top-down projection to V1 is crucial to drive visual associative learning by modulating the response gain of V1 neurons to non-relevant stimulus.


Asunto(s)
Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Corteza Visual/fisiología , Animales , Axones/fisiología , Axones/efectos de la radiación , Conducta Animal , Potenciales Postsinápticos Excitadores/efectos de la radiación , Potenciales Postsinápticos Inhibidores/efectos de la radiación , Rayos Láser , Luz , Ratones Endogámicos C57BL , Estimulación Luminosa , Corteza Prefrontal/efectos de la radiación , Recompensa , Análisis y Desempeño de Tareas , Corteza Visual/efectos de la radiación
18.
Neuroscience ; 409: 1-15, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30986438

RESUMEN

Perceptual decisions, especially for difficult stimuli, can be influenced by choices and outcomes in previous trials. However, it is not well understood how stimulus strength modulates the temporal characteristics as well as the magnitude of trial history influence. We addressed this question using a contrast detection task in freely moving mice. We found that, at lower as compared to higher stimulus contrast, the current choice of the mice was more influenced by choices and outcomes in the past trials and the influence emerged from a longer history. To examine the neural basis of stimulus strength-dependent history influence, we recorded from the secondary motor cortex (M2), a prefrontal region that plays an important role in cue-guided actions and memory-guided behaviors. We found that more M2 neurons conveyed information about choices on the past two trials at lower than at higher contrast. Furthermore, history-trial activity in M2 was important for decoding upcoming choice at low contrast. Thus, trial history influence of perceptual choice is adaptive to the strength of sensory evidence, which may be important for action selection in a dynamic environment.


Asunto(s)
Potenciales de Acción/fisiología , Conducta de Elección/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Estimulación Acústica , Animales , Señales (Psicología) , Masculino , Ratones , Estimulación Luminosa
19.
Neuron ; 35(3): 547-53, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12165475

RESUMEN

The primary visual cortex is organized into clusters of cells having similar classical receptive field (CRF) properties. Nonclassical, extra-receptive fields (ERFs) can either inhibit or facilitate the response elicited by stimulation within the CRF. Here, we report that in the primary visual cortex of cat, neurons with similar inhibitory or facilitatory ERF properties are also grouped into clusters. These clusters are randomly distributed in all cortical layers, with no detectable relationship with orientation and ocular dominance columns. This functional organization of neurons with respect to ERF properties may allow an efficient processing of global visual information.


Asunto(s)
Gatos/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Retina/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Potenciales de Acción/fisiología , Animales , Gatos/anatomía & histología , Tamaño de la Célula/fisiología , Red Nerviosa/citología , Inhibición Neural/fisiología , Neuronas/citología , Orientación/fisiología , Transmisión Sináptica/fisiología , Visión Binocular/fisiología , Corteza Visual/citología
20.
Neuron ; 36(5): 945-54, 2002 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-12467597

RESUMEN

Receptive field properties of visual cortical neurons depend on the spatiotemporal context within which the stimuli are presented. We have examined the temporal context dependence of cortical orientation tuning using dynamic visual stimuli with rapidly changing orientations. We found that tuning to the orientation of the test stimulus depended on a briefly presented preceding stimulus, with the preferred orientation shifting away from the preceding orientation. Analyses of the spatial-phase dependence of the shift showed that the effect cannot be explained by purely feedforward mechanisms, but can be accounted for by activity-dependent changes in the recurrent interactions between different orientation columns. Thus, short-term plasticity of the intracortical circuit can mediate dynamic modification of orientation tuning, which may be important for efficient visual coding.


Asunto(s)
Neuronas/metabolismo , Estimulación Luminosa , Corteza Visual/fisiología , Campos Visuales/fisiología , Animales , Gatos , Electrofisiología , Matemática , Modelos Neurológicos , Reconocimiento Visual de Modelos/fisiología , Tálamo/citología , Tálamo/metabolismo , Factores de Tiempo , Corteza Visual/citología , Vías Visuales/fisiología , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA