Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquac Nutr ; 2022: 8617265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860470

RESUMEN

This study was conducted to investigate the effects of replacing fishmeal (FM) with Chlorella sorokiniana on growth and flesh quality of Pacific white shrimp, Litopenaeus vannamei. A control diet was formulated to contain 560 g/kg FM, and then chlorella meal was used to replace 0% (C-0), 20% (C-20), 40% (C-40), 60% (C-60), 80% (C-80), and 100% (C-100) of dietary FM, respectively. The six isoproteic and isolipidic diets were fed to shrimp (1.37 ± 0.02 g) for 8 weeks. The results showed that weight gain (WG) and protein retention (PR) of C-20 group were significantly higher than those of C-0 group (P < 0.05), while no significant differences were observed in WG and PR between C-0 and C-40 groups (P > 0.05). When the replaced level of FM by chlorella meal reached 60%, the WG of shrimp decreased and feed conversion ratio (FCR) increased significantly (P < 0.05). The quadratic regression analysis indicated that substituted fishmeal levels with chlorella meal were 20.50% and 28.25%, respectively, to obtain the highest WG and lowest FCR. In C-40 and C-60 groups, the body surface presented higher redness than the control (P < 0.05). No significant differences in the whole body and muscle composition, SOD, T-AOC, GSH-PX activities, MDA contents, total collagen content, steaming loss, texture property, free delicious amino acids contents, PUFAs, and n-3/n-6 PUFAs in flesh were observed among the three groups of C-0, C-20, and C-40 (P > 0.05). Compared to the control group, C-60, C-80, and C-100 groups showed lower flesh hardness, chewiness, shear force, and higher steaming loss and resilience (P < 0.05). There were no significant differences in serum TP, TG, GLU, and ALB contents, boiling loss, freezing loss, total free amino acids, SAFs and MUFAs among all the groups (P >0.05). Conclusively, in a diet containing 560 g/kg FM, chlorella meal could replace 40% dietary FM without negative effects on the growth and flesh quality, while increase the body redness of white shrimp.

2.
Fish Shellfish Immunol ; 119: 635-644, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740770

RESUMEN

The study investigated the dietary effects of Clostridium autoethanogenum protein (CAP) substituting fish meal on the growth, intestinal histology, serum immune indexes and transcriptome of Pacific white shrimp, Litopenaeus vannamei. Four isonitrogenous and isolipidic diets were designed as the control diet (CON) containing 560 g/kg fish meal, and three fish meal-substituted diets in which 30% (CAP-30), 45% (CAP-45) and 70% (CAP-70) fish meal were replaced with CAP, respectively. The four diets were fed to shrimp with initial body weight of 2.78 ± 0.13 g for 8 weeks. The results showed that the weight gain, feed intake, survival and intestinal villus height in CAP-45 and CAP-70 groups were lower than those of the control and CAP-30 groups (P < 0.05). In addition, the serum aspartate aminotransferase and phenol oxidase activities in all fish meal-substituted groups, and the lysozyme activity in CAP-45 and CAP-70 groups were increased, while the total protein content in CAP-45 and CAP-70 groups was decreased when compared with the control (P < 0.05). Transcriptome profiling of hepatopancreas indicated that high inclusion of CAP negatively affected the protein synthesis and the utilization of nutrients by regulating pancreas secretion, protein digestion and absorption, ribosome pathways, and disturbed the immune system and metabolic processes by phagosomes and lysosomes pathways, thereby affecting the growth performance and immune function of shrimp. In conclusion, CAP could substitute 30% fish meal in a diet containing 560 g/kg fish meal without adverse effects on the growth, intestinal histology and immunity of Pacific white shrimp.


Asunto(s)
Alimentación Animal , Clostridium , Penaeidae , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Proteínas de Peces , Peces , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Penaeidae/genética
3.
Fish Shellfish Immunol ; 112: 46-55, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33609702

RESUMEN

The present study aims to investigate the effects of dietary synbiotics supplementation methods on growth, feed utilization, hepatopancreas and intestinal histology, non-specific immunity and microbiota community of Pacific white shrimp (Litopenaeus vannamei). A control diet was designed to contain 18% fish meal (CON), and then 3 g kg-1 synbiotics (Bioture, consisting of Bacillus subtilis, Saccharomyces cerevisiae, ß-glucan and mannan oligosaccharide, etc) was supplemented to the control diet with three methods, directly adding in diets for pelleting (DAP), spraying diets after pelleting at once (SDA), spraying diets before feeding every day (SDE). Shrimp with initial body weight of 1.5 ± 0.12 g were fed one of the four diets for 56 days. The results showed that dietary synbiotics significantly increased the weight gain (WG), apparent digestibility coefficient (ADC) of crude protein (CP) and dry matter (DM), hepatopancreatic protease activity and decreased feed conversion ratio (FCR) (P < 0.05). Among the three synbiotics-added diets, SDE group showed the best growth with significantly higher WG than DAP group (P < 0.05). Serum activities of total superoxide dismutase, catalase, acid phosphatase, lysozyme and alkaline phosphatase of synbiotics-added groups were significantly higher, and serum malondialdehyde level was significantly lower than those of the control (P < 0.05). The intestinal villus width and villus number were also increased by the supplementation of synbiotics. The cumulative mortality was reduced in the three synbiotics-added groups after challenging with Vibrio parahaemolyticus (P < 0.05), and SDE group showed a significantly lower mortality than the control and DAP groups (P < 0.05). In intestinal microbiota composition, the abundance of Lactococcus tended to increase and Vibro tended to decreased in SDA and SDE groups. In conclusion, dietary synbiotics improved the growth, feed utilization, intestine health and non-specific immunity of Pacific white shrimp, and spraying synbiotics on diet presented better performance than adding synbiotics in diet for pelleting.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Intestinos/efectos de los fármacos , Penaeidae/inmunología , Simbióticos , Alimentación Animal/análisis , Animales , Dieta , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/fisiología , Intestinos/fisiología , Penaeidae/crecimiento & desarrollo , Penaeidae/fisiología , Distribución Aleatoria , Simbióticos/administración & dosificación , Vibrio parahaemolyticus/fisiología
4.
Fish Shellfish Immunol ; 108: 53-62, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33248252

RESUMEN

Azomite is a hydrated calcium sodium aluminosilicat rich in rare earth elements. To investigate the dietary effects of Azomite on growth, intestine microbiota and morphology, immunohematological changes and disease resistance, seven diets with Azomite supplementation of 0 (the control), 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg (A0, A1, A2, A3, A4, A5, A6), were prepared and fed to largemouth bass, Micropterus salmoides (7.96 ± 0.19) for 60 days. The results revealed that the weight gain (WG) increased first and then decreased with the increasing dietary Azomite, and the A2 group presented the highest WG and lowest feed conversion ratio among all the groups. The supplementation of 2.0 g/kg Azomite significantly increased the intestine protease activity, the crude protein of whole body and protein retention (P < 0.05), and high inclusion of Azomite (6.0 g/kg) significantly reduced the lipid retention (P < 0.05). The amounts of red blood cells in A5, A6 groups, white blood cells in A3, A5, A6 groups and lymphocyte in A2-A6 groups were all significantly higher than those in the control group (P < 0.05). In addition, serum superoxide dismutase and catalase activities in A5, A6 groups, and serum alkaline phosphatase and lysozyme activities in A2-A4 groups showed significantly higher values than the control group (P < 0.05). Intestinal microbiota analysis indicated that the Tenericutes abundance was increased, whereas Proteobacteria abundance was decreased in all Azomite supplemented groups. The villus height in A2-A4 groups, and the villus width in A2 group were significantly higher than those of the control group (P < 0.05). The cumulative mortality was reduced by the addition of 2.0-5.0 g/kg Azomite after challenging with A. hydrophila (P < 0.05). In conclusion, proper addition of Azomite in diets improved the growth, intestine morphology, immune response and disease resistance in largemouth bass, and the optimal inclusion was estimated to be 2.0-3.0 g/kg diet.


Asunto(s)
Silicatos de Aluminio/metabolismo , Lubina/inmunología , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de los Peces/inmunología , Oligoelementos/metabolismo , Silicatos de Aluminio/administración & dosificación , Alimentación Animal/análisis , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Lubina/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Enfermedades de los Peces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Distribución Aleatoria , Oligoelementos/administración & dosificación
5.
Metabolites ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355171

RESUMEN

Clostridium autoethanogenum protein (CAP) is a new single-cell protein explored in aquatic feeds in recent years. This study investigated the dietary effects of CAP replacing fishmeal (FM) on the growth, intestinal histology and flesh metabolism of largemouth bass (Micropterus salmoides). In a basal diet containing 700 g/kg of FM, CAP was used to substitute 0%, 15%, 30%, 45%, 70% and 100% of dietary FM to form six isonitrogenous diets (Con, CAP-15, CAP-30, CAP-45, CAP-70, CAP-100) to feed largemouth bass (80.0 g) for 12 weeks. Only the CAP-100 group showed significantly lower weight gain (WG) and a higher feed conversion ratio (FCR) than the control (p < 0.05). A broken-line analysis based on WG and FCR showed that the suitable replacement of FM with CAP was 67.1−68.0%. The flesh n-3/n-6 polyunsaturated fatty acid, intestinal protease activity, villi width and height in the CAP-100 group were significantly lower than those in the control group (p < 0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that the metabolic pathway in flesh was mainly enriched in the "lipid metabolic pathway", "amino acid metabolism", "endocrine system" and "carbohydrate metabolism". In conclusion, CAP could successfully replace 67.1−68.0% of dietary FM, while the complete substitution decreased the growth, damaged the intestinal morphology and down-regulated the lipid metabolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA