Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 17(21): 5444, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008664

RESUMEN

Correction for 'Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal disodium cromoglycate' by Hend Baza et al., Soft Matter, 2020, 16, 8565-8576.

2.
Soft Matter ; 16(37): 8565-8576, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32785364

RESUMEN

Lyotropic chromonic liquid crystals (LCLCs) represent aqueous dispersions of organic disk-like molecules that form cylindrical aggregates. Despite the growing interest in these materials, their flow behavior is poorly understood. Here, we explore the effect of shear on dynamic structures of the nematic LCLC, formed by 14 wt% water dispersion of disodium cromoglycate (DSCG). We employ in situ polarizing optical microscopy (POM) and small-angle and wide-angle X-ray scattering (SAXS/WAXS) to obtain independent and complementary information on the director structures over a wide range of shear rates. The DSCG nematic shows a shear-thinning behavior with two shear-thinning regions (Region I at [small gamma, Greek, dot above] < 1 s-1 and Region III at [small gamma, Greek, dot above] > 10 s-1) separated by a pseudo-Newtonian Region II (1 s-1 < [small gamma, Greek, dot above] < 10 s-1). The material is of a tumbling type. In Region I, [small gamma, Greek, dot above] < 1 s-1, the director realigns along the vorticity axis. An increase of [small gamma, Greek, dot above] above 1 s-1 triggers nucleation of disclination loops. The disclinations introduce patches of the director that deviates from the vorticity direction and form a polydomain texture. Extension of the domains along the flow and along the vorticity direction decreases with the increase of the shear rate to 10 s-1. Above 10 s-1, the domains begin to elongate along the flow. At [small gamma, Greek, dot above] > 100 s-1, the texture evolves into periodic stripes in which the director is predominantly along the flow with left and right tilts. The period of stripes decreases with an increase of [small gamma, Greek, dot above]. The shear-induced transformations are explained by the balance of the elastic and viscous energies. In particular, nucleation of disclinations is associated with an increase of the elastic energy at the walls separating nonsingular domains with different director tilts. The uncovered shear-induced structural effects would be of importance in the further development of LCLC applications.

3.
ACS Nano ; 15(7): 11501-11513, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34128655

RESUMEN

The addition of nanoparticles (NPs) to polymers is a powerful method to improve the mechanical and other properties of macromolecular materials. Such hybrid polymer-particle systems are also rich in fundamental soft matter physics. Among several factors contributing to mechanical reinforcement, a polymer-mediated NP network is considered to be the most important in polymer nanocomposites (PNCs). Here, we present an integrated experimental-theoretical study of the collective NP dynamics in model PNCs using X-ray photon correlation spectroscopy and microscopic statistical mechanics theory. Silica NPs dispersed in unentangled or entangled poly(2-vinylpyridine) matrices over a range of NP loadings are used. Static collective structure factors of the NP subsystems at temperatures above the bulk glass transition temperature reveal the formation of a network-like microstructure via polymer-mediated bridges at high NP loadings above the percolation threshold. The NP collective relaxation times are up to 3 orders of magnitude longer than the self-diffusion limit of isolated NPs and display a rich dependence with observation wavevector and NP loading. A mode-coupling theory dynamical analysis that incorporates the static polymer-mediated bridging structure and collective motions of NPs is performed. It captures well both the observed scattering wavevector and NP loading dependences of the collective NP dynamics in the unentangled polymer matrix, with modest quantitative deviations emerging for the entangled PNC samples. Additionally, we identify an unusual and weak temperature dependence of collective NP dynamics, in qualitative contrast with the mechanical response. Hence, the present study has revealed key aspects of the collective motions of NPs connected by polymer bridges in contact with a viscous adsorbing polymer medium and identifies some outstanding remaining challenges for the theoretical understanding of these complex soft materials.

4.
ACS Appl Mater Interfaces ; 12(51): 57322-57329, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306366

RESUMEN

We report the self-assembly of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymers (BBCPs) into spherical micelles in an ethanol/water mixture as an efficient templating approach to fabricate mesoporous carbon spheres using polydopamine as a carbon source. Mesopore sizes of up to 25 nm are well controlled and are dependent on the molecular weight (Mw) of the BBCP. Such large pores are difficult to obtain using traditional linear block copolymers templates. Furthermore, bimodal mesoporous carbon spheres with two populations of pore sizes (24.5 and 6.5 nm) are obtained using a BBCP coassembled with a small molecule surfactant (Pluronic F127). An oxygen reduction reaction is used to demonstrate that electrocatalytic performance can be tuned by controlling the carbon sphere morphologies. This work provides a novel and versatile method to fabricate carbon spheres with broadly tunable bimodal pore sizes for potential applications in catalysis, separations, and energy storage.

5.
ACS Appl Mater Interfaces ; 7(49): 27027-30, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26600372

RESUMEN

A novel and practical approach of exfoliating graphite into graphene uses a sequence of flow and sonication on graphite suspensions. Graphite sediment after intense mixing is found to be altered, graphite having curled-up edges, which increases its sensitivity to ultrasound. Quadrupled graphene yield is achieved through introducing flow pretreatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA