Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34343498

RESUMEN

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Asunto(s)
Antioxidantes/farmacología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/inmunología , Selenio/farmacología , Selenoproteína W/metabolismo , Células TH1/citología , Diferenciación Celular/inmunología , Polaridad Celular , Colon/inmunología , Colon/patología , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Células TH1/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 82(24): 4700-4711.e12, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384136

RESUMEN

Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Biosíntesis de Proteínas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Factor 2 de Elongación Peptídica/metabolismo
3.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32208170

RESUMEN

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Asunto(s)
Metilación de ADN/genética , Heterocromatina/genética , Metaboloma/genética , S-Adenosilmetionina/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citoplasma/genética , Citoplasma/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HCT116 , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metionina/genética , Ratones , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos
4.
Mol Cell ; 73(6): 1115-1126.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30772176

RESUMEN

Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Histonas/metabolismo , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cromatina/genética , Remoción de Radical Alquila , Regulación Fúngica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Metilación , Mutación , Unión Proteica , Proteína Fosfatasa 2/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Nat Chem Biol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060393

RESUMEN

Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.

7.
Bioessays ; 46(6): e2300218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616332

RESUMEN

Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.


Asunto(s)
Lipoilación , Metionina , Mitocondrias , Metionina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , Animales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Adaptación Fisiológica
8.
EMBO J ; 40(11): e106771, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33909912

RESUMEN

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.


Asunto(s)
Fibroblastos/metabolismo , Sulfuro de Hidrógeno/metabolismo , Quinasa Syk/antagonistas & inhibidores , Animales , Calcineurina/metabolismo , Células Cultivadas , Cisteína/metabolismo , Fibroblastos/efectos de los fármacos , Glicina/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Oxazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Mol Cell ; 66(2): 180-193.e8, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28366644

RESUMEN

S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell.


Asunto(s)
Histonas/metabolismo , Fosfatidiletanolaminas/metabolismo , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Lisina/metabolismo , Metilación , Mutación , Estrés Oxidativo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , S-Adenosilhomocisteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Transcripción Genética
10.
J Biol Chem ; 295(33): 11928-11937, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32636300

RESUMEN

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Mioblastos/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/genética , Línea Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Proteínas de Unión a Hierro/genética , Ratones , Mioblastos/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frataxina
11.
J Biol Chem ; 291(20): 10437-44, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26953345

RESUMEN

myo-Inositol, the precursor of all inositol compounds, has pivotal roles in cell metabolism and signaling pathways. Although physiological studies indicate a strong correlation between abnormal intracellular inositol levels and neurological disorders, very little is known about the regulation of inositol synthesis in mammalian cells. In this study, we report that IP6K1, an inositol hexakisphosphate kinase that catalyzes the synthesis of inositol pyrophosphate, regulates inositol synthesis in mammalian cells. Ip6k1 ablation led to profound changes in DNA methylation and expression of Isyna1 (designated mIno1), which encodes the rate-limiting enzyme inositol-3-phosphate synthase. Interestingly, IP6K1 preferentially bound to the phospholipid phosphatidic acid, and this binding was required for IP6K1 nuclear localization and the regulation of mIno1 transcription. This is the first demonstration of IP6K1 as a novel negative regulator of inositol synthesis in mammalian cells.


Asunto(s)
Inositol/biosíntesis , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Metilación de ADN , Técnicas de Inactivación de Genes , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Ratones , Modelos Biológicos , Ácidos Fosfatidicos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/deficiencia , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
12.
J Bioenerg Biomembr ; 48(2): 113-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25432572

RESUMEN

Cardiolipin (CL), the signature phospholipid of mitochondria, is involved in a plethora of cellular processes and is crucial for mitochondrial function and architecture. The de novo synthesis of CL in the mitochondria is followed by a unique remodeling process, in which CL undergoes cycles of deacylation and reacylation. Specific fatty acyl composition is acquired during this process, and remodeled CL contains predominantly unsaturated fatty acids. The importance of CL remodeling is underscored by the life-threatening genetic disorder Barth syndrome (BTHS), caused by mutations in tafazzin, which reacylates monolysocardiolipin (MLCL) generated from the deacylation of CL. Just as CL-deficient yeast mutants have been instrumental in elucidating functions of this lipid, the recently characterized CL-phospholipase mutant cld1Δ and the tafazzin mutant taz1Δ are powerful tools to understand the functions of CL remodeling. In this review, we discuss recent advances in understanding the role of CL in mitochondria with specific focus on the enigmatic functions of CL remodeling.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Lisofosfolípidos/metabolismo , Mitocondrias/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/genética , Ácidos Grasos Insaturados/genética , Humanos , Lisofosfolípidos/genética , Mitocondrias/genética , Mitocondrias/patología , Fosfolipasas/genética , Fosfolipasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 289(6): 3114-25, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24318983

RESUMEN

Cardiolipin (CL) that is synthesized de novo is deacylated to monolysocardiolipin (MLCL), which is reacylated by tafazzin. Remodeled CL contains mostly unsaturated fatty acids. In eukaryotes, loss of tafazzin leads to growth and respiration defects, and in humans, this results in the life-threatening disorder Barth syndrome. Tafazzin deficiency causes a decrease in the CL/MLCL ratio and decreased unsaturated CL species. Which of these biochemical outcomes contributes to the physiological defects is not known. Yeast cells have a single CL-specific phospholipase, Cld1, that can be exploited to distinguish between these outcomes. The cld1Δ mutant has decreased unsaturated CL, but the CL/MLCL ratio is similar to that of wild type cells. We show that cld1Δ rescues growth, life span, and respiratory defects of the taz1Δ mutant. This suggests that defective growth and respiration in tafazzin-deficient cells are caused by the decreased CL/MLCL ratio and not by a deficiency in unsaturated CL. CLD1 expression is increased during respiratory growth and regulated by the heme activator protein transcriptional activation complex. Overexpression of CLD1 leads to decreased mitochondrial respiration and growth and instability of mitochondrial DNA. However, ATP concentrations are maintained by increasing glycolysis. We conclude that transcriptional regulation of Cld1-mediated deacylation of CL influences energy metabolism by modulating the relative contribution of glycolysis and respiration.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Síndrome de Barth , Metabolismo Energético/fisiología , Consumo de Oxígeno/fisiología , Fosfolipasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Cardiolipinas/genética , Cardiolipinas/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Eliminación de Gen , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfolipasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
J Neurochem ; 133(2): 273-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25345501

RESUMEN

The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood stabilizers lithium and valproic acid, used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate synthase, the rate-limiting enzyme of inositol synthesis, led to the inactivation of GSK-3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood stabilizer valproic acid effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in the inactivation of GSK-3α suggests a unifying hypothesis for mechanism of mood-stabilizing drugs. Inositol is an essential metabolite that serves as a precursor for inositol lipids and inositol phosphates. We report that inhibition of the rate-limiting enzyme of inositol synthesis leads to the inactivation of glycogen synthase kinase (GSK) 3α by increasing inhibitory phosphorylation of this kinase. These findings have implications for the therapeutic mechanisms of mood stabilizers and suggest that inositol synthesis and GSK 3α activity are intrinsically related.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Inositol/metabolismo , Inositol/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Neuroblastoma/patología , ARN Mensajero/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácido Valproico/farmacología
15.
J Biol Chem ; 288(34): 24898-908, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23824185

RESUMEN

Although inositol pyrophosphates have diverse roles in phosphate signaling and other important cellular processes, little is known about their functions in the biosynthesis of inositol and phospholipids. Here, we show that KCS1, which encodes an inositol pyrophosphate kinase, is a regulator of inositol metabolism. Deletion of KCS1, which blocks synthesis of inositol pyrophosphates on the 5-hydroxyl of the inositol ring, causes inositol auxotrophy and decreased intracellular inositol and phosphatidylinositol. These defects are caused by a profound decrease in transcription of INO1, which encodes myo-inositol-3-phosphate synthase. Expression of genes that function in glycolysis, transcription, and protein processing is not affected in kcs1Δ. Deletion of OPI1, the INO1 transcription repressor, does not fully rescue INO1 expression in kcs1Δ. Both the inositol pyrophosphate kinase and the basic leucine zipper domains of KCS1 are required for INO1 expression. Kcs1 is regulated in response to inositol, as Kcs1 protein levels are increased in response to inositol depletion. The Kcs1-catalyzed production of inositol pyrophosphates from inositol pentakisphosphate but not inositol hexakisphosphate is indispensable for optimal INO1 transcription. We conclude that INO1 transcription is fine-tuned by the synthesis of inositol pyrophosphates, and we propose a model in which modulation of Kcs1 controls INO1 transcription by regulating synthesis of inositol pyrophosphates.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Fosfatos de Inositol/biosíntesis , Mio-Inositol-1-Fosfato Sintasa/biosíntesis , Fosfotransferasas (Aceptor del Grupo Fosfato)/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Fosfatos de Inositol/genética , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología
16.
J Hazard Mater ; 478: 135527, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151363

RESUMEN

The disposable paper cups (DPCs) release millions of microplastics (MPs) when used for hot beverages. However, the tissue-specific deposition and toxic effects of MPs and associated toxins remain largely unexplored, especially at daily consumption levels. We administered MPs and associated toxins extracted from leading brand DPCs to pregnant mice, revealing dose-responsive harmful effects on fetal development and maternal physiology. MPs were detected in all 13 examined tissues, with preferred depositions in the fetus, placenta, kidney, spleen, lung, and heart, contributing to impaired phenotypes. Brain tissues had the smallest MPs (90.35 % < 10 µm). A dose-responsive shift in the cecal microbiome from Firmicutes to Bacteroidetes was observed, coupled with enhanced biosynthesis of microbial fatty acids. A moderate consumption of 3.3 cups daily was sufficient to alter the cecal microbiome, global metabolic functions, and immune health, as reflected by tissue-specific transcriptomic analyses in maternal blood, placenta, and mammary glands, leading to neurodegenerative and miscarriage risks. Gene-based benchmark dose framework analysis suggested a safe exposure limit of 2 to 4 cups/day in pregnant mice. Our results highlight tissue-specific accumulation and metabolic and reproductive toxicities in mice at DPC consumption levels presumed non-hazardous, with potential health implications for pregnant women and fetuses.

17.
Sci Bull (Beijing) ; 69(12): 1920-1935, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38423871

RESUMEN

Diabetic retinopathy (DR) is the leading cause of blindness among the working-age population. Although controlling blood glucose levels effectively reduces the incidence and development of DR to less than 50%, there are currently no diagnostic biomarkers or effective treatments for DR development in glucose-well-controlled diabetic patients (GW-DR). In this study, we established a prospective GW-DR cohort by strictly adhering to glycemic control guidelines and maintaining regular retinal examinations over a median 2-year follow-up period. The discovery cohort encompassed 71 individuals selected from a pool of 292 recruited diabetic patients at baseline, all of whom consistently maintained hemoglobin A1c (HbA1c) levels below 7% without experiencing hypoglycemia. Within this cohort of 71 individuals, 21 subsequently experienced new-onset GW-DR, resulting in an incidence rate of 29.6%. In the validation cohort, we also observed a significant GW-DR incidence rate of 17.9%. Employing targeted metabolomics, we investigated the metabolic characteristics of serum in GW-DR, revealing a significant association between lower levels of ethanolamine and GW-DR risk. This association was corroborated in the validation cohort, exhibiting superior diagnostic performance in distinguishing GW-DR from diabetes compared to the conventional risk factor HbA1c, with AUCs of 0.954 versus 0.506 and 0.906 versus 0.521 in the discovery and validation cohorts, respectively. Furthermore, in a streptozotocin (STZ)-induced diabetic rat model, ethanolamine attenuated diabetic retinal inflammation, accompanied by suppression of microglial diacylglycerol (DAG)-dependent protein kinase C (PKC) pathway activation. In conclusion, we propose that ethanolamine is a potential biomarker and represents a viable biomarker-based therapeutic option for GW-DR.


Asunto(s)
Biomarcadores , Retinopatía Diabética , Etanolamina , Humanos , Retinopatía Diabética/sangre , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Biomarcadores/sangre , Animales , Masculino , Femenino , Persona de Mediana Edad , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Ratas , Glucemia/metabolismo , Glucemia/análisis , Estudios Prospectivos , Diabetes Mellitus Experimental/sangre , Anciano , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Control Glucémico/métodos
18.
Adv Sci (Weinh) ; : e2403058, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159293

RESUMEN

Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.

19.
Nat Cell Biol ; 26(2): 219-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253667

RESUMEN

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Enfermedad de Niemann-Pick Tipo C , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Lisosomas/metabolismo , Inmunidad Innata , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
20.
Nat Cell Biol ; 26(2): 278-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38302721

RESUMEN

Lipids are indispensable for energy storage, membrane structure and cell signalling. However, dynamic changes in various categories of endogenous lipids in mammalian early embryonic development have not been systematically characterized. Here we comprehensively investigated the dynamic lipid landscape during mouse and human early embryo development. Lipid signatures of different developmental stages are distinct, particularly for the phospholipid classes. We highlight that the high degree of phospholipid unsaturation is a conserved feature as embryos develop to the blastocyst stage. Moreover, we show that lipid desaturases such as SCD1 are required for in vitro blastocyst development and blastocyst implantation. One of the mechanisms is through the regulation of unsaturated fatty-acid-mediated fluidity of the plasma membrane and apical proteins and the establishment of apical-basal polarity during development of the eight-cell embryo to the blastocyst. Overall, our study provides an invaluable resource about the remodelling of the endogenous lipidome in mammalian preimplantation embryo development and mechanistic insights into the regulation of embryogenesis and implantation by lipid unsaturation.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Embarazo , Humanos , Femenino , Ratones , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Blastocisto/metabolismo , Fosfolípidos/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA