Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 40(6): 759-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24299490

RESUMEN

AIMS: This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). METHODS: NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signalling pathway in brain neurones were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. RESULTS: Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. CONCLUSIONS: NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases.


Asunto(s)
Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cadmio/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Cadmio/sangre , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
2.
Protein Expr Purif ; 92(2): 230-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24145284

RESUMEN

Antimicrobial peptide scolopin 1 (AMP-scolopin 1) is a small cationic peptide identified from centipede venoms of Scolopendra subspinipes mutilans. It has broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We first report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antimicrobial peptide AMP-scolopin 1. The fusion protein expressed in a soluble form was purified to a purity of 95% by Ni-IDA chromatography. After the SUMO-scolopin 1 fusion protein was cleaved by the SUMO protease at 30°C for 1 h, the cleaved sample was reapplied to a Ni-IDA. The recombinant scolopin1 had similar antimicrobial properties to the synthetic scolopin 1. Thus, we successfully established a system for purifying peptide of centipede, which could be used for further research.


Asunto(s)
Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Venenos de Artrópodos/metabolismo , Artrópodos/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Artrópodos/química , Venenos de Artrópodos/genética , Artrópodos/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
3.
Oncotarget ; 7(7): 7534-49, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26859572

RESUMEN

Rotenone, a neurotoxic pesticide, induces loss of dopaminergic neurons related to Parkinson's disease. Previous studies have shown that rotenone induces neuronal apoptosis partly by triggering hydrogen peroxide (H2O2)-dependent suppression of mTOR pathway. However, the underlying mechanism is not fully understood. Here, we show that rotenone elevates intracellular free calcium ion ([Ca2+]i) level, and activates CaMKII, resulting in inhibition of mTOR signaling and induction of neuronal apoptosis. Chelating [Ca2+]i with BAPTA/AM, preventing extracellular Ca2+ influx using EGTA, inhibiting CaMKII with KN93, or silencing CaMKII significantly attenuated rotenone-induced H2O2 production, mTOR inhibition, and cell death. Interestingly, using TTFA, antimycin A, catalase or Mito-TEMPO, we found that rotenone-induced mitochondrial H2O2 also in turn elevated [Ca2+]i level, thereby stimulating CaMKII, leading to inhibition of mTOR pathway and induction of neuronal apoptosis. Expression of wild type mTOR or constitutively active S6K1, or silencing 4E-BP1 strengthened the inhibitory effects of catalase, Mito-TEMPO, BAPTA/AM or EGTA on rotenone-induced [Ca2+]i elevation, CaMKII phosphorylation and neuronal apoptosis. Together, the results indicate that the crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that how to control over-elevation of intracellular Ca2+ and overproduction of mitochondrial H2O2 may be a new approach to deal with the neurotoxicity of rotenone.


Asunto(s)
Apoptosis/efectos de los fármacos , Calcio/metabolismo , Peróxido de Hidrógeno/farmacología , Mitocondrias/metabolismo , Neuronas/patología , Rotenona/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proliferación Celular , Células Cultivadas , Factores Eucarióticos de Iniciación/antagonistas & inhibidores , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidantes/farmacología , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Desacopladores/farmacología
4.
Cell Signal ; 26(8): 1680-1689, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24726895

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dysregulation of mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of PD. However, the underlying mechanism is incompletely elucidated. Here, we show that PD mimetics (6-hydroxydopamine, N-methyl-4-phenylpyridine or rotenone) suppressed phosphorylation of mTOR, S6K1 and 4E-BP1, reduced cell viability, and activated caspase-3 and PARP in PC12 cells and primary neurons. Overexpression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 in PC12 cells partially prevented cell death in response to the PD toxins, revealing that mTOR-mediated S6K1 and 4E-BP1 pathways due to the PD toxins were inhibited, leading to neuronal cell death. Furthermore, we found that the inhibition of mTOR signaling contributing to neuronal cell death was attributed to suppression of Akt and activation of AMPK. This is supported by the findings that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPKα with compound C partially attenuated inhibition of phosphorylation of mTOR, S6K1 and 4E-BP1, activation of caspase-3, and neuronal cell death triggered by the PD toxins. The results indicate that PD stresses activate AMPK and inactivate Akt, causing neuronal cell death via inhibiting mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that proper co-manipulation of AMPK/Akt/mTOR signaling may be a potential strategy for prevention and treatment of PD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Apoptosis/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Oxidopamina/toxicidad , Células PC12 , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Ratas , Rotenona/toxicidad , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA