Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 299(4): 103067, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841483

RESUMEN

Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.


Asunto(s)
Dinaminas , Glucólisis , Hipertensión Pulmonar , Dinámicas Mitocondriales , Proteínas de Unión al GTP Monoméricas , Proteína de Unión al GTP rhoA , Animales , Dinaminas/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Ovinos , Modelos Animales de Enfermedad
2.
Am J Respir Crit Care Med ; 207(8): 1055-1069, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913491

RESUMEN

Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Masculino , Ratas , Femenino , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón , Arteria Pulmonar , Hipoxia/complicaciones , Estrógenos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/complicaciones , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/genética
3.
Nitric Oxide ; 140-141: 50-57, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659679

RESUMEN

Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.


Asunto(s)
Caveolina 1 , Óxido Nítrico , Animales , Ratones , Calcineurina/metabolismo , Calcineurina/farmacología , Caveolina 1/genética , Células Cultivadas , Células Endoteliales/metabolismo , Endotelina-1/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación
4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139362

RESUMEN

The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.


Asunto(s)
Hipertensión Pulmonar , Mitocondrias , Animales , Adenosina Trifosfato/metabolismo , Células Endoteliales/metabolismo , Glucólisis , Hidrolasas/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ovinos , GTP Fosfohidrolasas/metabolismo
5.
Nitric Oxide ; 108: 12-19, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338599

RESUMEN

Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.


Asunto(s)
Arginina/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Argininosuccinatoliasa/química , Argininosuccinatoliasa/metabolismo , Argininosuccinato Sintasa/química , Argininosuccinato Sintasa/metabolismo , Bovinos , Células Endoteliales , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Free Radic Biol Med ; 210: 183-194, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979892

RESUMEN

OBJECTIVE: Pulmonary hypertension (PH) is a progressive disease with vascular remodeling as a critical structural alteration. We have previously shown that metabolic reprogramming is an early initiating mechanism in animal models of PH. This metabolic dysregulation has been linked to remodeling the mitochondrial network to favor fission. However, whether the mitochondrial fission/fusion balance underlies the metabolic reprogramming found early in PH development is unknown. METHODS: Utilizing a rat early model of PH, in conjunction with cultured pulmonary endothelial cells (PECs), we utilized metabolic flux assays, Seahorse Bioassays, measurements of electron transport chain (ETC) complex activity, fluorescent microscopy, and molecular approaches to investigate the link between the disruption of mitochondrial dynamics and the early metabolic changes that occur in PH. RESULTS: We observed increased fusion mediators, including Mfn1, Mfn2, and Opa1, and unchanged fission mediators, including Drp1 and Fis1, in a two-week monocrotaline-induced PH animal model (early-stage PH). We were able to establish a connection between increases in fusion mediator Mfn1 and metabolic reprogramming. Using an adenoviral expression system to enhance Mfn1 levels in pulmonary endothelial cells and utilizing 13C-glucose labeled substrate, we found increased production of 13C lactate and decreased TCA cycle metabolites, revealing a Warburg phenotype. The use of a 13C5-glutamine substrate showed evidence that hyperfusion also induces oxidative carboxylation. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels secondary to the disruption of cellular bioenergetics and higher levels of mitochondrial reactive oxygen species (mt-ROS). The elevation in mt-ROS correlated with attenuated ETC complexes I and III activities. Utilizing a mitochondrial-targeted antioxidant to suppress mt-ROS, limited HIF-1α protein levels, which reduced cellular glycolysis and reestablished mitochondrial membrane potential. CONCLUSIONS: Our data connects mitochondrial fusion-mediated mt-ROS to the Warburg phenotype in early-stage PH development.


Asunto(s)
Hipertensión Pulmonar , Dinámicas Mitocondriales , Ratas , Animales , Dinámicas Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Transporte de Electrón , Células Endoteliales/metabolismo , Pulmón/metabolismo , Hipertensión Pulmonar/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Free Radic Biol Med ; 221: 125-135, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38734269

RESUMEN

Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes.


Asunto(s)
Lesión Pulmonar Aguda , Citoesqueleto , Células Endoteliales , Dinámicas Mitocondriales , Receptor Toll-Like 4 , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Animales , Proteína de Unión al GTP rhoA/metabolismo , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Quinasas Asociadas a rho/metabolismo , Humanos , Citoesqueleto/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Ratones Endogámicos C57BL , Lipopolisacáridos , Masculino , Transducción de Señal
8.
Biomedicines ; 10(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35203550

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressure due to increased pulmonary vascular resistance, secondary to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Work over the last decade has led to the identification of a critical role for metabolic reprogramming in the PAH pathogenesis. It is becoming clear that in addition to its role in ATP generation, the mitochondrion is an important organelle that regulates complex and integrative metabolic- and signal transduction pathways. This review focuses on mitochondrial metabolism alterations that occur in deranged pulmonary vessels and the right ventricle, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, redox homeostasis, as well as iron and calcium metabolism. Further understanding of these mitochondrial metabolic mechanisms could provide viable therapeutic approaches for PAH patients.

9.
Redox Biol ; 41: 101878, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33578126

RESUMEN

Acute lung injury (ALI) is a devastating clinical syndrome with no effective therapies. Inflammasome activation has been reported to play a critical role in the initiation and progression of ALI. The molecular mechanisms involved in regulating the activation of inflammasome in ALI remains unresolved, although increases in mitochondrial derived reactive oxygen species (mito-ROS) are involved. Our previous work has shown that the mitochondrial redistribution of uncoupled eNOS impairs mitochondrial bioenergetics and increases mito-ROS generation. Thus, the focus of our study was to determine if lipopolysaccharide (LPS)-mediated inflammasome activation involves the mitochondrial redistribution of uncoupled eNOS. Our data show that the increase in mito-ROS involved in LPS-mediated inflammasome activation is associated with the disruption of mitochondrial bioenergetics in human lung microvascular endothelial cells (HLMVEC) and the mitochondrial redistribution of eNOS. These effects are dependent on RhoA-ROCK signaling and are mediated via increased phosphorylation of eNOS at Threonine (T)-495. A derivative of the mitochondrial targeted Szeto-Schiller peptide (SSP) attached to the antioxidant Tiron (T-SSP), significantly attenuated LPS-mediated mito-ROS generation and inflammasome activation in HLMVEC. Further, T-SSP attenuated mitochondrial superoxide production in a mouse model of sepsis induced ALI. This in turn significantly reduced the inflammatory response and attenuated lung injury. Thus, our findings show that the mitochondrial redistribution of uncoupled eNOS is intimately involved in the activation of the inflammatory response in ALI and implicate attenuating mito-ROS as a therapeutic strategy in humans.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico Sintasa de Tipo III , Especies Reactivas de Oxígeno/metabolismo
10.
Redox Biol ; 38: 101794, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248422

RESUMEN

Acute lung injury (ALI), a devastating illness induced by systemic inflammation e.g., sepsis or local lung inflammation e.g., COVID-19 mediated severe pneumonia, has an unacceptably high mortality and has no effective therapy. ALI is associated with increased pulmonary microvascular hyperpermeability and alveolar flooding. The small Rho GTPases, RhoA and Rac1 are central regulators of vascular permeability through cytoskeleton rearrangements. RhoA and Rac1 have opposing functional outcome: RhoA induces an endothelial contractile phenotype and barrier disruption, while Rac1 stabilizes endothelial junctions and increases barrier integrity. In ALI, RhoA activity is increased while Rac1 activity is reduced. We have shown that the activation of RhoA in lipopolysaccharide (LPS)-mediated ALI, is dependent, at least in part, on a single nitration event at tyrosine (Y)34. Thus, the purpose of this study was to determine if the inhibition of Rac1 is also dependent on its nitration. Our data show that Rac1 inhibition by LPS is associated with its nitration that mass spectrometry identified as Y32, within the switch I region adjacent to the nucleotide-binding site. Using a molecular modeling approach, we designed a nitration shielding peptide for Rac1, designated NipR2 (nitration inhibitor peptide for the Rho GTPases 2), which attenuated the LPS-induced nitration of Rac1 at Y32, preserves Rac1 activity and attenuates the LPS-mediated disruption of the endothelial barrier in human lung microvascular endothelial cells (HLMVEC). Using a murine model of ALI induced by intratracheal installation of LPS we found that NipR2 successfully prevented Rac1 nitration and Rac1 inhibition, and more importantly attenuated pulmonary inflammation, reduced lung injury and prevented the loss of lung function. Together, our data identify a new post-translational mechanism of Rac1 inhibition through its nitration at Y32. As NipR2 also reduces sepsis induced ALI in the mouse lung, we conclude that Rac1 nitration is a therapeutic target in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Barrera Alveolocapilar , COVID-19 , Células Endoteliales , Lipopolisacáridos/toxicidad , Neuropéptidos/metabolismo , SARS-CoV-2/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , Barrera Alveolocapilar/enzimología , Barrera Alveolocapilar/patología , Barrera Alveolocapilar/virología , COVID-19/inducido químicamente , COVID-19/enzimología , COVID-19/patología , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Humanos , Masculino , Ratones , Neuropéptidos/genética , Proteína de Unión al GTP rac1/genética
11.
Redox Biol ; 38: 101785, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221570

RESUMEN

Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The specific mechanisms involved in VILI-induced pulmonary capillary leakage, a key pathologic feature of VILI are still far from resolved. The mechanoreceptor, transient receptor potential cation channel subfamily V member 4, TRPV4 plays a key role in the development of VILI through unresolved mechanism. Endothelial nitric oxide synthase (eNOS) uncoupling plays an important role in sepsis-mediated ARDS so in this study we investigated whether there is a role for eNOS uncoupling in the barrier disruption associated with TRPV4 activation during VILI. Our data indicate that the TRPV4 agonist, 4α-Phorbol 12,13-didecanoate (4αPDD) induces pulmonary arterial endothelial cell (EC) barrier disruption through the disruption of mitochondrial bioenergetics. Mechanistically, this occurs via the mitochondrial redistribution of uncoupled eNOS secondary to a PKC-dependent phosphorylation of eNOS at Threonine 495 (T495). A specific decoy peptide to prevent T495 phosphorylation reduced eNOS uncoupling and mitochondrial redistribution and preserved PAEC barrier function under 4αPDD challenge. Further, our eNOS decoy peptide was able to preserve lung vascular integrity in a mouse model of VILI. Thus, we have revealed a functional link between TRPV4 activation, PKC-dependent eNOS phosphorylation at T495, and EC barrier permeability. Reducing pT495-eNOS could be a new therapeutic approach for the prevention of VILI.


Asunto(s)
Células Endoteliales , Mitocondrias/fisiología , Canales Catiónicos TRPV , Animales , Células Endoteliales/metabolismo , Endotelio/metabolismo , Metabolismo Energético , Humanos , Ratones , Permeabilidad , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
12.
Redox Biol ; 36: 101593, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554303

RESUMEN

Transforming growth factor beta-1 (TGF-ß1) signaling is increased and mitochondrial function is decreased in multiple models of pulmonary hypertension (PH) including lambs with increased pulmonary blood flow (PBF) and pressure (Shunt). However, the potential link between TGF-ß1 and the loss of mitochondrial function has not been investigated and was the focus of our investigations. Our data indicate that exposure of pulmonary arterial endothelial cells (PAEC) to TGF-ß1 disrupted mitochondrial function as determined by enhanced mitochondrial ROS generation, decreased mitochondrial membrane potential, and disrupted mitochondrial bioenergetics. These events resulted in a decrease in cellular ATP levels, decreased hsp90/eNOS interactions and attenuated shear-mediated NO release. TGF-ß1 induced mitochondrial dysfunction was linked to a nitration-mediated activation of Akt1 and the subsequent mitochondrial translocation of endothelial NO synthase (eNOS) resulting in the nitration of carnitine acetyl transferase (CrAT) and the disruption of carnitine homeostasis. The increase in Akt1 nitration correlated with increased NADPH oxidase activity associated with increased levels of p47phox, p67phox, and Rac1. The increase in NADPH oxidase was associated with a decrease in peroxisome proliferator-activated receptor type gamma (PPARγ) and the PPARγ antagonist, GW9662, was able to mimic the disruptive effect of TGF-ß1 on mitochondrial bioenergetics. Together, our studies reveal for the first time, that TGF-ß1 can disrupt mitochondrial function through the disruption of cellular carnitine homeostasis and suggest that stimulating carinitine homeostasis may be an avenue to treat pulmonary vascular disease.


Asunto(s)
Células Endoteliales , Hipertensión Pulmonar , Animales , Carnitina/farmacología , Células Endoteliales/metabolismo , Metabolismo Energético , Homeostasis , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Ovinos , Factor de Crecimiento Transformador beta1/metabolismo
13.
Redox Biol ; 36: 101679, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32818797

RESUMEN

The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.


Asunto(s)
Autofagia , Enfermedades Pulmonares , Animales , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno
14.
Curr Alzheimer Res ; 16(11): 1039-1049, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31660829

RESUMEN

BACKGROUND: Lifetime exposure to environmental (neuro) toxicants may contribute to the pathogenesis of Alzheimer's Disease (AD). Since many contaminants do not cross the blood-brain barrier, brain tissue alone cannot serve to assess the spectrum of environmental exposures. METHODS: We used liquid and gas chromatography tandem mass spectrometry to monitor, in postmortem liver and adipose tissues of AD patients and age-matched controls, the occurrence and concentrations of 11 environmental contaminants. RESULTS: Seven toxicants were detected at 100% frequency: p,p'-DDE, dieldrin, triclosan, methylparaben, bisphenol A, fipronil and tetrabromobisphenol A (TBBPA). Intra-individual, tissuedependent differences were detected for triclosan, methylparaben, fipronil and TBBPA. High concentrations of p,p'-DDE and dieldrin were observed in adipose tissue when compared to liver values for both AD cases and controls. CONCLUSION: This study provides vital data on organ-specific human body burdens to select analytes and demonstrate the feasibility of analyzing small sample quantities for toxicants suspected to constitute AD risk factors.


Asunto(s)
Tejido Adiposo/química , Enfermedad de Alzheimer , Contaminantes Ambientales/análisis , Hígado/química , Exposición a Riesgos Ambientales/efectos adversos , Humanos
15.
Curr Alzheimer Res ; 12(2): 116-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25654508

RESUMEN

Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.


Asunto(s)
Enfermedad de Alzheimer/etiología , Contaminación Ambiental/efectos adversos , Enfermedad de Alzheimer/epidemiología , Animales , Humanos
16.
Mol Biosyst ; 7(9): 2589-98, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21731954

RESUMEN

We developed a procedure for automated confocal microscopy to image the effect of the non-essential yeast gene deletion set on the localisation of the plasma membrane GFP-labelled protein Mrh1p-GFP. To achieve this it was necessary to devise an expression system expressing Redstar2 RFP-fluorescence specifically in the nucleus, mCherry RFP at a lower intensity in the cytoplasm and Mrh1p-GFP in the plasma membrane. This fluorescence labelling scheme utilising specifically designed image analysis scripts allowed automated segmentation of the cells into sub-regions comprising nuclei, cytoplasm and cell-surface. From this high-throughput high content screening approach we were able to determine that gene deletions including emc1Δ, emc2Δ, emc3Δ, emc4Δ, emc5Δ and emc6Δ, caused intracellular mislocalisation at the ER of a plasma membrane protein Mrh1p-GFP. CPY processing patterns were unaffected in these mutants and collectively our data suggest a transport role for the EMC genes within the early secretory pathway. HAC1 is central to the unfolded protein response (UPR) and in its absence, i.e. the absence of UPR, emc1Δ-, emc3Δ-, emc4Δ-, emc5Δ-hac1Δ double mutants were specifically hypersensitive to ER-stress (tunicamycin) lending credence to the usefulness of the high content microscope screening for discovery of functional effects of single mutants.


Asunto(s)
Microscopía Confocal/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA