Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(6): 2114-2127, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38227798

RESUMEN

Mutations in the Microrchidia CW-type zinc finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high CNS transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss-of-function characteristics due to protein synthesis defects in Morc2a p.S87L were also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.


Asunto(s)
Terapia Genética , Animales , Humanos , Ratones , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/terapia , Dependovirus/genética , Fibroblastos/metabolismo , Terapia Genética/métodos , Radical Hidroxilo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34769001

RESUMEN

Charcot-Marie-Tooth disease type 2A (CMT2A) is the most common hereditary axonal neuropathy caused by mutations in MFN2 encoding Mitofusin-2, a multifunctional protein located in the outer mitochondrial membrane. In order to study the effects of a novel MFN2K357T mutation associated with early onset, autosomal dominant severe CMT2A, we generated a knock-in mouse model. While Mfn2K357T/K357T mouse pups were postnatally lethal, Mfn2+/K357T heterozygous mice were asymptomatic and had no histopathological changes in their sciatic nerves up to 10 months of age. However, immunofluorescence analysis of Mfn2+/K357T mice revealed aberrant mitochondrial clustering in the sciatic nerves from 6 months of age, in optic nerves from 8 months, and in lumbar spinal cord white matter at 10 months, along with microglia activation. Ultrastructural analyses confirmed dysmorphic mitochondrial aggregates in sciatic and optic nerves. After exposure of 6-month-old mice to lipopolysaccharide, Mfn2+/K357T mice displayed a higher immune response, a more severe motor impairment, and increased CNS inflammation, microglia activation, and macrophage infiltrates. Overall, ubiquitous Mfn2K357T expression renders the CNS and peripheral nerves of Mfn2+/K357T mice more susceptible to mitochondrial clustering, and augments their response to inflammation, modeling some cellular mechanisms that may be relevant for the development of neuropathy in patients with CMT2A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/patología , Animales , Modelos Animales de Enfermedad , Inmunidad/genética , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas Mitocondriales/genética
3.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466470

RESUMEN

In homology-directed repair, mediated knock-in single-stranded oligodeoxynucleotides (ssODNs) can be used as a homologous template and present high efficiency, but there is still a need to improve efficiency. Previous studies have mainly focused on controlling double-stranded break size, ssODN stability, and the DNA repair cycle. Nevertheless, there is a lack of research on the correlation between the cell cycle and single-strand template repair (SSTR) efficiency. Here, we investigated the relationship between cell cycle and SSTR efficiency. We found higher SSTR efficiency during mitosis, especially in the metaphase and anaphase. A Cas9 protein with a nuclear localization signal (NLS) readily migrated to the nucleus; however, the nuclear envelope inhibited the nuclear import of many nucleotide templates. This seemed to result in non-homologous end joining (NHEJ) before the arrival of the homologous template. Thus, we assessed whether NLS-tagged ssODNs and free NLS peptides could circumvent problems posed by the nuclear envelope. NLS-tagging ssODNs enhanced SSTR and indel efficiency by 4-fold compared to the control. Our results suggest the following: (1) mitosis is the optimal phase for SSTR, (2) the donor template needs to be delivered to the nucleus before nuclease delivery, and (3) NLS-tagging ssODNs improve SSTR efficiency, especially high in mitosis.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Técnicas de Sustitución del Gen/métodos , Mitosis , Señales de Localización Nuclear , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación
4.
J Am Chem Soc ; 141(3): 1366-1372, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30565924

RESUMEN

Albumin is a promising candidate as a biomarker for potential disease diagnostics and has been extensively used as a drug delivery carrier for decades. In these two directions, many albumin-detecting probes and exogenous albumin-based nanocomposite delivery systems have been developed. However, there are only a few cases demonstrating the specific interactions of exogenous probes with albumin in vivo, and nanocomposite delivery systems usually suffer from tedious fabrication processes and potential toxicity of the complexes. Herein, we demonstrate a facile "one-for-all" switchable nanotheranostic (NanoPcS) for both albumin detection and cancer treatment. In particular, the in vivo specific binding between albumin and PcS, arising from the disassembly of injected NanoPcS, is confirmed using an inducible transgenic mouse system. Fluorescence imaging and antitumor tests on different tumor models suggest that NanoPcS has superior tumor-targeting ability and the potential for time-modulated, activatable photodynamic therapy.


Asunto(s)
Colorantes Fluorescentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Albúmina Sérica/metabolismo , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Humanos , Indoles/síntesis química , Indoles/metabolismo , Indoles/uso terapéutico , Masculino , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/metabolismo , Embarazo , Unión Proteica , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Dig Dis Sci ; 63(3): 619-627, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29372479

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder involving changes in normal bowel movements. The pathophysiology of IBS is not clearly understood owing to the lack of identifiable pathological abnormalities and reliable biomarkers. AIM: The aim of this study was to discover the novel and reliable biomarker for IBS. METHOD: In this study, neonatal maternal separation (NMS) stress model was used for the IBS mouse model. Further assessment was conducted with whole gastrointestinal transit test, quantitative RT-PCR, histological examination, and western blot. RESULTS: Male pups developed symptoms similar to those of human IBS with diarrhea (IBS-D), such as low-grade inflammation, stool irregularity, and increased bowel motility. NMS stress influenced to the interstitial cells of Cajal (ICC) and induced altered bowel motility, resulting in IBS-D-like symptoms. In addition, we found neuronal nitric oxide synthase (nNOS) to be a novel biomarker for ICC under NMS stress. nNOS expression was only observed in the ICC of the submucosal plexus of IBS-D mice, and the inhibition of nNOS changed the phenotype from IBS-D to IBS with constipation. CONCLUSION: Our study demonstrates that early-life stress can influence to ICC and modulate bowel activity and that nNOS might be used as a biomarker for ICC stimulation in IBS.


Asunto(s)
Células Intersticiales de Cajal/patología , Síndrome del Colon Irritable/enzimología , Síndrome del Colon Irritable/etiología , Óxido Nítrico Sintasa/metabolismo , Estrés Psicológico/complicaciones , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Diarrea/enzimología , Diarrea/etiología , Diarrea/patología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal , Síndrome del Colon Irritable/patología , Masculino , Privación Materna , Ratones , Ratones Endogámicos C57BL
6.
Exp Dermatol ; 26(11): 1053-1059, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28423200

RESUMEN

Alopecia areata (AA) is an autoimmune disease that results in spot baldness in humans. Adequate animal models for AA are currently lacking. The objective of this study was to elucidate the mechanism of autoimmune-like alopecia (ALA) in C57BL/6.CD80CD86-deficient (B6.CD80CD86-/- ) mice. Incidence and severity of alopecia were analysed in 58 B6.CD80CD86-/- mice using histological examination, flow cytometry, multiplex enzyme-linked immunosorbent assay, quantitative RT-PCR and CD25 inhibition test. Both male and female B6.CD80CD86-/- mice showed almost 100% incidence of hair loss at 40 weeks of age. Moreover, CD4+FoxP3+Treg (Treg) cell population in B6.CD80CD86-/- mice was significantly lower than in B6 mice, which presumably underlined autoimmune reaction. Histologically, B6.CD80CD86-/- mice showed CD4+ and CD8+ T-cell infiltration around terminal follicle region and exhibited hair follicle destruction in the anagen or catagen stage. Negative correlation between the number of CD4+FoxP3+ Tregs and ALA was confirmed by the CD25 depletion test in B6 mice, as follicle destruction was similar to that observed in B6.CD80CD86-/- animals. CD80CD86 deficiency disrupted CD4+FoxP3+ Treg homoeostasis and prompted the development of ALA. We demonstrated that B6.CD80CD86-/- mice might have several advantages as an ALA model, because they exhibited high incidence of disease phenotype and epipathogenesis similar to that observed in human AA.


Asunto(s)
Alopecia/inmunología , Enfermedades Autoinmunes/inmunología , Antígeno B7-1/genética , Antígeno B7-2/genética , Linfocitos T Reguladores/inmunología , Factores de Edad , Alopecia/patología , Animales , Enfermedades Autoinmunes/patología , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Folículo Piloso/patología , Homeostasis , Interferón gamma/sangre , Interferón gamma/genética , Interleucina-10/sangre , Interleucina-12/sangre , Interleucina-12/genética , Subunidad alfa del Receptor de Interleucina-2/antagonistas & inhibidores , Interleucina-4/sangre , Masculino , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Factores Sexuales , Linfocitos T Reguladores/patología , Células TH1/inmunología , Células TH1/metabolismo
7.
Biosci Biotechnol Biochem ; 80(12): 2318-2324, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27485250

RESUMEN

Recently, we found that maternal stress could induce premature mammary gland involution in interleukin 10 knock out (IL-10-/-) mice. To elucidate correlation between stress, IL-10, and mammary gland involution, corticosterone was injected into the lactating wild type and IL-10-deficient mice and assessed mammary gland phenotype. Repetitive corticosterone injection developed premature mammary gland involution only in B6.IL-10-/- mice; moreover, it induced alopecia in nursing pups. Corticosterone injection induced several typical changes such as mammary gland epithelial cell apoptosis, macrophage infiltration, fat deposition in adipocyte, STAT3 phosphorylation, and upregulation of tyrosine hydroxylase gene in adrenal gland. Overall incidence of pup alopecia and mammary gland involution was relatively high in corticosterone than control B6.IL-10-/- group (57% vs. 20%). Our finding demonstrates that IL-10 is important for stress modulation, and B6.Il-10-/- with corticosterone has several advantage such as simple to establish, well-defined onset of mammary gland involution, high incidence, and inducing pup alopecia.


Asunto(s)
Corticosterona/farmacología , Interleucina-10/deficiencia , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/fisiología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Alopecia/etiología , Animales , Apoptosis/efectos de los fármacos , Femenino , Lactancia/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
8.
Biosci Biotechnol Biochem ; 79(3): 374-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25391291

RESUMEN

Tiglium seed is a seed of mature Croton Tiglium Linne containing croton oils, which have been traditionally used as laxative or purgative. As it contains phorbol derivatives, we investigated the mutagenicity and tumor-promoting activity of Tiglium seed. Tiglium seed extract produced the mutagenic responses in five Salmonella typhimurium strains in Ames assay, whereas it did not alter the frequencies of chromosomal aberrations or micronuclei, indicating that it exerted the mutagenic potential, not clastogenicity. Accompanied with phosphorylation of connexin43 (Cx43) and extracellular signal-regulated kinases 1/2 (ERK1/2), Tiglium seed extract inhibited gap junctional intercellular communication (GJIC) associated with tumor-promoting potential. Importantly, these effects were blocked by a protein kinase C (PKC) inhibitor or mitogen-activated protein kinase (MAPKs) inhibitors, suggesting that Tiglium seed-induced GJIC inhibition was regulated by phosphorylation of Cx43 via PKC and MAPKs signaling. In conclusion, Tiglium seed has mutagenicity, possibly linking to tumor-promoting potential through the dysfunction of GJIC.


Asunto(s)
Croton/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Extractos Vegetales/toxicidad , Proteína Quinasa C/metabolismo , Semillas/química , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinógenos/toxicidad , Comunicación Celular/efectos de los fármacos , Línea Celular , Aberraciones Cromosómicas/efectos de los fármacos , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Pruebas de Micronúcleos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Mutágenos/toxicidad , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas
10.
Mol Ther Nucleic Acids ; 32: 161-172, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37064777

RESUMEN

Recent therapeutic strategies for hemophilia include long-term therapeutic gene expression using adeno-associated virus (AAV) and rebalancing therapy via the downregulation of anticoagulant pathways. However, these approaches have limitations in immune responses or insufficiency to control acute bleeding. Thus, we developed a therapeutic strategy for hemophilia B by a combined rebalancing and human factor 9 (hF9) gene knockin (KI) using a lipid nanoparticle (LNP) and AAV. Antithrombin (AT; Serpin Family C Member 1 [Serpinc1]) was selected as the target anticoagulation pathway for the gene KI. First, the combined use of LNP-clustered regularly interspaced short palindromic repeats (CRISPR) and AAV donor resulted in 20% insertions or deletions (indels) in Serpinc1 and 67% reduction of blood mouse AT concentration. Second, hF9 coding sequences were integrated into approximately 3% of the target locus. hF9 KI yielded approximately 1,000 ng/mL human factor IX (hFIX) and restored coagulation activity to a normal level. LNP-CRISPR injection caused sustained AT downregulation and hFIX production up to 63 weeks. AT inhibition and hFIX protein-production ability could be maintained by the proliferation of genetically edited hepatocytes in the case of partial hepatectomy. The co-administration of AAV and LNP showed no severe side effects except random integrations. Our results demonstrate hemophilia B therapy by a combination of rebalancing and hF9 KI using LNP and AAV.

11.
Mol Ther Nucleic Acids ; 34: 102050, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37916225

RESUMEN

Gene therapy and rebalancing therapy have emerged as promising approaches for treating hemophilia A, but there are limitations, such as temporary efficacy due to individual differences. Genome editing for hemophilia has shown long-term therapeutic potential in preclinical trials. However, a cautious approach is necessary because genome editing is irreversible. Therefore, we attempted to induce low-level human factor 8 (hF8) gene knockin (KI) using 244-cis lipid nanoparticles and low-dose adeno-associated virus to minimize side effects and achieve a therapeutic threshold in hemophilia A mice. We selected the serpin family C member 1, SerpinC1, locus as a target to enable a combined rebalancing strategy with hF8 KI to augment efficacy. This strategy improved blood coagulation activity and reduced hemophilic complications without adverse effects. Furthermore, hemophilic mice with genome editing exhibit enhanced survival for 40 weeks. Here, we demonstrate an effective, safe, and sustainable treatment for hemophilia A. This study provides valuable information to establish safe and long-term genome-editing-mediated treatment strategies for treating hemophilia and other protein-deficient genetic diseases.

12.
Pharmacology ; 90(3-4): 151-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22890360

RESUMEN

BACKGROUND AND PURPOSE: Lipopolysaccharide (LPS) induces intestinal dysmotility by alteration of smooth muscle and enteric neuronal activities. However, there is no report on the modulatory effects of LPS on the interstitial cells of Cajal (ICCs). We investigated the effect of LPS and its signal transduction in ICCs. METHODS: We performed whole-cell patch clamp and RT-PCR in cultured ICCs from mouse small intestine. RESULTS: LPS suppressed the generation of pacemaker currents of ICCs. The mRNA transcripts for Toll-like receptor 4 (TLR4) were expressed in ICCs. However, the inhibitory action of LPS on pacemaker currents from TLR4(+/+) mice was not present in TLR4(-/-) mice. The inhibitory effects of LPS on ICCs were blocked by glibenclamide (an inhibitor of ATP-sensitive K(+) channels), NS-398 (a COX-2 inhibitor), AH6808 [a prostaglandin E(2) (PGE(2))-EP(2) receptor antagonist], ODQ (an inhibitor of guanylate cyclase) and L-NAME [an inhibitor of nitric oxide synthase (NOS)]. Furthermore, genistein and herbimycin A (tyrosine kinase inhibitors) blocked the LPS-induced inhibitory action on pacemaker activity in ICCs. CONCLUSIONS: LPS can activate ICCs to release NO and PGE(2) through TLR4 activation. The released NO and PGE(2) inhibit pacemaker currents by activating ATP-sensitive K(+) channels. The LPS actions are mediated by tyrosine kinase signaling pathways.


Asunto(s)
Células Intersticiales de Cajal/efectos de los fármacos , Lipopolisacáridos/farmacología , Animales , Dinoprostona/biosíntesis , Células Intersticiales de Cajal/fisiología , Canales KATP/fisiología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Proteínas Tirosina Quinasas/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/fisiología
13.
Biomedicines ; 10(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35885055

RESUMEN

Natural soluble antagonist and decoy receptor on the surface of the cell membrane are evolving as crucial immune system regulators as these molecules are capable of recognizing, binding, and neutralizing (so-called inhibitors) their targeted ligands. Eventually, these soluble antagonists and decoy receptors terminate signaling by prohibiting ligands from connecting to their receptors on the surface of cell membrane. Interleukin-18 binding protein (IL-18BP) participates in regulating both Th1 and Th2 cytokines. IL-18BP is a soluble neutralizing protein belonging to the immunoglobulin (Ig) superfamily as it harbors a single Ig domain. The Ig domain is essential for its binding to the IL-18 ligand and holds partial homology to the IL-1 receptor 2 (IL-1R2) known as a decoy receptor of IL-1α and IL-1ß. IL-18BP was defined as a unique soluble IL-18BP that is distinct from IL-18Rα and IL-18Rß chain. IL-18BP is encoded by a separated gene, contains 8 exons, and is located at chr.11 q13.4 within the human genome. In this review, we address the difference in the biological activity of IL-18BP isoforms, in the immunity balancing Th1 and Th2 immune response, its critical role in autoimmune diseases, as well as current clinical trials of recombinant IL-18BP (rIL-18BP) or equivalent.

14.
J Am Assoc Lab Anim Sci ; 61(1): 15-20, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879899

RESUMEN

Laboratory animal medicine (LAM) is a corner stone of animal-based research and has been a veterinary specialty for over 60 y. Today 5 Colleges of LAM (American, European, Japanese, Korean, and Indian) that certify specialists (Diplomates) in LAM are members of the International Association of Colleges of LAM (IACLAM). Goals of IACLAM are to support the development of new Colleges of LAM, to harmonize expectations for the knowledge and skills of newly certified LAM Diplomate, and to harmonize the standards (best practices) for training and examination of candidates among the member Colleges. IACLAM recently conducted an in-depth review and comparison of oversight, training, credentialing, and examination standards in the 5 Colleges as part of an initiative to create a framework for harmonization and consistency for these activities across the 5 Colleges. The process has led to an agreement on recommendations for knowledge and skill requirements for a newly certified Diplomate, as described by each College in a detailed role delineation document (RDD). The RDD is based on task analyses of the work responsibilities of laboratory animal veterinary Diplomates. This agreement is an important step toward the goal of global harmonization of LAM Diplomate training. Further efforts are planned for areas such as training, research, publication, and examination. This paper describes the role and content of the RDD and lists the differences and similarities among the RDDs of 5 Colleges of LAM.


Asunto(s)
Certificación , Educación en Veterinaria , Ciencia de los Animales de Laboratorio , Certificación/normas , Educación en Veterinaria/normas , Humanos , Internacionalidad , Ciencia de los Animales de Laboratorio/educación , Especialización , Medicina Veterinaria
15.
Front Immunol ; 13: 837590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281008

RESUMEN

IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32ß, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32ß was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.


Asunto(s)
Interleucinas , Neoplasias , Humanos , Interleucinas/genética , FN-kappa B/metabolismo , Obesidad , Isoformas de Proteínas/genética , Microambiente Tumoral
16.
Front Immunol ; 13: 837588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281066

RESUMEN

Cytokines are significantly associated with the homeostasis of immune responses in health and disease. Interleukin-32 (IL-32) is a cytokine originally discovered in natural killer cell transcript 4. IL-32 with different disorders has been described in terms of pathogenesis and the progression of diseases. Clinical studies have investigated IL-32 under various conditions, such as viral infection, autoimmune diseases, inflammatory diseases, certain types of cancer, vascular disease, and pulmonary diseases. The high expression of IL-32 was identified in different tissues with various diseases and found to have multiple transcripts of up to seven isoforms. However, the purification and biological activities of these isoforms have not been investigated yet. Therefore, in this study, we purified and compared the biological activity of recombinant IL-32 (rIL-32) isoforms. This is the first time for seven rIL-32 isoforms (α, ß, δ, γ, ϵ, ζ, and θ) to be cloned and purified using an Escherichia coli expression system. Next, we evaluate the biological activities of these seven rIL-32 isoforms, which were used to treat different types of cells by assessing the levels of inflammatory cytokine production. The results revealed that rIL-32θ possessed the most dominant biological activity in both immune and non-immune cells.


Asunto(s)
Interleucinas , Expresión Génica , Interleucinas/genética , Interleucinas/metabolismo , Isoformas de Proteínas/genética
17.
Mol Ther Nucleic Acids ; 29: 551-562, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36090746

RESUMEN

Recently, clinical trials of adeno-associated virus-mediated replacement therapy have suggested long-term therapeutic effects for several genetic diseases of the liver, including hemophilia. However, there remain concerns regarding decreased therapeutic effects when the liver is regenerated or when physiological proliferation occurs. Although genome editing using the clustered regularly interspaced short palindromic repeats/Cas9 system provides an opportunity to solve this problem, low knock-in efficiency may limit its application for therapeutically relevant expression. Here, we identified a novel gene, APOC3, in which a strong promoter facilitated the expression of knocked-in genes in hepatocytes. We also investigated the effects of APOC3 editing using a small Cas9 protein derived from Campylobacter jejuni (CjCas9) in a hemophilic model. We demonstrated that adeno-associated virus-mediated delivery of CjCas9 and donor led to moderate levels of human factor 9 expression in APOC3-humanized mice. Moreover, knock-in-driven expression induced substantial recovery of clotting function in mice with hemophilia B. There was no evidence of off-target editing in vitro or in vivo. Collectively, our findings demonstrated therapeutically relevant expression using a precise and efficient APOC3-editing platform, providing insights into the development of further long-term therapeutics for diverse monogenic liver diseases.

18.
Sci Adv ; 8(3): eabj6901, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061543

RESUMEN

Hemophilia is a hereditary disease that remains incurable. Although innovative treatments such as gene therapy or bispecific antibody therapy have been introduced, substantial unmet needs still exist with respect to achieving long-lasting therapeutic effects and treatment options for inhibitor patients. Antithrombin (AT), an endogenous negative regulator of thrombin generation, is a potent genome editing target for sustainable treatment of patients with hemophilia A and B. In this study, we developed and optimized lipid nanoparticles (LNPs) to deliver Cas9 mRNA along with single guide RNA that targeted AT in the mouse liver. The LNP-mediated CRISPR-Cas9 delivery resulted in the inhibition of AT that led to improvement in thrombin generation. Bleeding-associated phenotypes were recovered in both hemophilia A and B mice. No active off-targets, liver-induced toxicity, and substantial anti-Cas9 immune responses were detected, indicating that the LNP-mediated CRISPR-Cas9 delivery was a safe and efficient approach for hemophilia therapy.


Asunto(s)
Hemofilia A , Nanopartículas , Animales , Antitrombinas , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Liposomas , Ratones , Trombina/genética
19.
Xenotransplantation ; 18(6): 369-79, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22168143

RESUMEN

BACKGROUND: In clinical trials using adult porcine islet products, islets should be isolated from the designated pathogen-free (DPF) pigs under the current good manufacturing practice (GMP) regulations. Our previous studies suggested that male DPF pigs are better donors than retired breeder pigs and histomorphometrical parameters of donor pancreas predict the porcine islet quality. We aimed to investigate whether the use of the newer bovine nervous tissue-free enzymes and a revised donor selection strategy could improve the islet graft function in the context of islet isolation with DPF pigs. METHODS: Using 30 DPF pigs within a closed herd, we compared the islet yield of porcine islets isolated with Liberase PI (n = 11, as a historical control group), Liberase MTF C/T, which is a GMP-grade enzyme (n = 12), and CIzyme collagenase MA/BP protease (n = 7). We analyzed the relationship between the diabetes reversal rate of recipient NOD/SCID mice (n = 75) and histomorphometric parameters of each donor pancreas as well as donor characteristics. RESULTS: Proportion of islets larger than 200 µm from the biopsied donor pancreas (P = 0.006) better predicted islet yield than age (P = 0.760) or body weight (P = 0.371) of donor. The proportion of islets larger than 200 µm from the biopsied donor pancreas was not related to the sex of the donor miniature pig (P = 0.358). The islet yield obtained with the three enzymes did not differ, even after stratification of the donor with the histomorphometric parameters of the biopsied donor pancreas and the sex of donor. The use of the newer bovine nervous tissue-free enzymes (P < 0.001), a higher proportion of large islets in donor pancreas (P = 0.006), and a male sex of the donor (P = 0.025) were independent predictors of earlier diabetes reversal. CONCLUSIONS: Use of the newer bovine nervous tissue-free enzymes including a GMP-grade enzyme resulted in better islet quality than that of islet isolated using Liberase PI. To obtain high-quality islet from DPF pigs, the donor should be male pig and histomorphometrical parameters from donor pancreas should be considered.


Asunto(s)
Separación Celular/métodos , Selección de Donante , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Islotes Pancreáticos/cirugía , Islotes Pancreáticos/ultraestructura , Porcinos Enanos , Animales , Bovinos , Colagenasas/metabolismo , Diabetes Mellitus Experimental/cirugía , Femenino , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Porcinos , Termolisina/metabolismo , Trasplante Heterólogo/fisiología
20.
Biology (Basel) ; 10(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439937

RESUMEN

Hemophilia A (HA) is an X-linked recessive blood coagulation disorder, and approximately 50% of severe HA patients are caused by F8 intron 22 inversion (F8I22I). However, the F8I22I mouse model has not been developed despite being a necessary model to challenge pre-clinical study. A mouse model similar to human F8I22I was developed through consequent inversion by CRISPR/Cas9-based dual double-stranded breakage (DSB) formation, and clinical symptoms of severe hemophilia were confirmed. The F8I22I mouse showed inversion of a 391 kb segment and truncation of mRNA transcription at the F8 gene. Furthermore, the F8I22I mouse showed a deficiency of FVIII activity (10.9 vs. 0 ng/mL in WT and F8I22I, p < 0.0001) and severe coagulation disorder phenotype in the activated partial thromboplastin time (38 vs. 480 s, p < 0.0001), in vivo bleeding test (blood loss/body weight; 0.4 vs. 2.1%, p < 0.0001), and calibrated automated thrombogram assays (Thrombin generation peak, 183 vs. 21.5 nM, p = 0.0012). Moreover, histological changes related to spontaneous bleeding were observed in the liver, spleen, and lungs. We present a novel HA mouse model mimicking human F8I22I. With a structural similarity with human F8I22I, the F8I22I mouse model will be applicable to the evaluation of general hemophilia drugs and the development of gene-editing-based therapy research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA