Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(1): 53-67.e7, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058782

RESUMEN

Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance.


Asunto(s)
Antibacterianos/uso terapéutico , Doxiciclina/uso terapéutico , Hígado/inmunología , Pulmón/inmunología , Mitocondrias/metabolismo , Sepsis/tratamiento farmacológico , Tetraciclina/uso terapéutico , Animales , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Transporte de Electrón , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Cell Mol Life Sci ; 81(1): 314, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066814

RESUMEN

This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.


Asunto(s)
Tejido Adiposo Pardo , Frío , Mitocondrias , Osteoporosis , Animales , Tejido Adiposo Pardo/metabolismo , Femenino , Ratones , Mitocondrias/metabolismo , Osteoporosis/metabolismo , Osteoporosis/patología , Osteoclastos/metabolismo , Ratones Endogámicos C57BL , Densidad Ósea , Termogénesis , Ovariectomía/efectos adversos , Huesos/metabolismo , Huesos/patología , Osteogénesis
3.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277756

RESUMEN

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Inflamasomas/metabolismo , Inflamasomas/farmacología , Fosforilación , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sistema de Señalización de MAP Quinasas , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Sirtuinas/farmacología
4.
J Cell Mol Med ; 27(9): 1157-1167, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36992609

RESUMEN

Growth and differentiation factor 15 (GDF15) is a member of the transforming growth factor-ß (TGF-ß) superfamily. GDF15 has been linked with several metabolic syndrome pathologies such as obesity and cardiovascular diseases. GDF15 is considered to be a metabolic regulator, although its precise mechanisms of action remain to be determined. Glial cell-derived neurotrophic factor family receptor alpha-like (GRAL), located in the hindbrain, has been identified as the receptor for GDF15 and signals through the coreceptor receptor tyrosine kinase (RET). Administration of GDF15 analogues in preclinical studies using various animal models has consistently been shown to induce weight loss through a reduction in food intake. GDF15, therefore, represents an attractive target to combat the current global obesity epidemic. In this article, we review current knowledge on GDF15 and its involvement in metabolic syndrome.


Asunto(s)
Síndrome Metabólico , Animales , Factor 15 de Diferenciación de Crecimiento/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Obesidad/metabolismo , Pérdida de Peso
5.
Ann Surg Oncol ; 30(4): 2246-2253, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36581723

RESUMEN

BACKGROUND: Active surveillance (AS) of low-risk T1a papillary thyroid carcinoma (PTC) is generally accepted as an alternative to immediate surgery. The cut-off in the size criterion for AS has recently been extended in select individuals, especially older patients. We evaluated the clinicopathological differences of T1b PTC according to age to investigate the possibility of AS in older patients. PATIENTS AND METHODS: From a cohort study of 1269 patients undergoing lobectomy for PTC, 1223 PTC patients with T1 stage disease (tumor ≤ 2 cm) were enrolled. The clinicopathological characteristics between T1a and T1b patients according to age were analyzed. RESULTS: Among the 1223 T1 cases, 918 (75.1%) were T1a (≤ 1 cm) and 305 (34.9%) T1b (> 1 and ≤ 2 cm). T1b PTC was associated with male sex, minimal extrathyroidal extension, lymphovascular invasion, occult central lymph node (LN) metastasis, and a higher number of metastatic LNs than T1a. However, in patients over 55 years of age, the clinicopathological features of the patients with T1a and T1b PTC were not significantly different except for minimal extrathyroidal extension, although many clinicopathological differences were observed in patients under 55 years of age. CONCLUSION: The clinicopathological features of patients with T1b PTC over 55 years of age are similar to those with T1a PTC and less aggressive than those with T1b PTC under 55 years of age. These findings suggest that AS may be possible in patients with T1b PTC over 55 years of age without high-risk features on preoperative examinations.


Asunto(s)
Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Espera Vigilante , Anciano , Humanos , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Metástasis Linfática , Estudios Retrospectivos , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Tiroidectomía , Femenino
6.
Proc Natl Acad Sci U S A ; 117(22): 12281-12287, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424099

RESUMEN

Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated host response to an infection. Here we report that the circulating levels of growth and differentiation factor-15 (GDF15) are strongly increased in septic shock patients and correlate with mortality. In mice, we find that peptidoglycan is a potent ligand that signals through the TLR2-Myd88 axis for the secretion of GDF15, and that Gdf15-deficient mice are protected against abdominal sepsis due to increased chemokine CXC ligand 5 (CXCL5)-mediated recruitment of neutrophils into the peritoneum, leading to better local bacterial control. Our results identify GDF15 as a potential target to improve sepsis treatment. Its inhibition should increase neutrophil recruitment to the site of infection and consequently lead to better pathogen control and clearance.


Asunto(s)
Bacteriemia/inmunología , Quimiocina CXCL5/inmunología , Factor 15 de Diferenciación de Crecimiento/inmunología , Neutrófilos/inmunología , Animales , Bacteriemia/genética , Bacteriemia/microbiología , Bacteriemia/prevención & control , Quimiocina CXCL5/genética , Femenino , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Cavidad Peritoneal/microbiología
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108676

RESUMEN

Cholangiocarcinoma is a malignant epithelial tumor arising from bile ducts that is frequently fatal. Diagnosis is difficult due to tumor location in the biliary tract. Earlier diagnosis requires less invasive methods of identifying effective biomarkers for cholangiocarcinoma. The present study investigated the genomic profiles of cell-free DNA (cfDNA) and DNA from corresponding primary cholangiocarcinomas using a targeted sequencing panel. Somatic mutations in primary tumor DNA and circulating tumor DNA (ctDNA) were compared and clinical applications of ctDNA validated in patients with cholangiocarcinoma. A comparison of primary tumor DNA and ctDNA identified somatic mutations in patients with early cholangiocarcinomas that showed clinical feasibility for early screening. The predictive value of single-nucleotide variants (SNVs) of preoperative plasma cfDNA positive for somatic mutations of the primary tumor was 42%. The sensitivity and specificity of postoperative plasma SNVs in detecting clinical recurrence were 44% and 45%, respectively. Targetable fibroblast growth factor receptor 2 (FGFR2) and Kirsten rat sarcoma virus (KRAS) mutations were detected in 5% of ctDNA samples from patients with cholangiocarcinoma. These findings showed that genomic profiling of cfDNA was useful in clinical evaluation, although ctDNA had limited ability to detect mutations in cholangiocarcinoma patients. Serial monitoring of ctDNA is important clinically and in assessing real-time molecular aberrations in cholangiocarcinoma patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Ácidos Nucleicos Libres de Células , Colangiocarcinoma , ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Biomarcadores de Tumor/genética , ADN de Neoplasias/genética , Ácidos Nucleicos Libres de Células/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
Cancer Immunol Immunother ; 71(3): 579-588, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34278517

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have become the standard of care for a variety of cancers, including non-small cell lung cancer (NSCLC). In this study, we investigated the frequency of pseudoprogression and hyperprogression in lung cancer patients treated with ICIs in the real world and aimed to discover a novel candidate marker to distinguish pseudoprogression from hyperprogression soon after ICI treatment. METHODS: This study included 74 patients with advanced NSCLC who were treated with PD-1/PD-L1 inhibitors at Chungnam National University Hospital (CNUH) between January 2018 and August 2020. Chest X-rays were examined on day 7 after the first ICI dose to identify changes in the primary mass, and the response was assessed by computed tomography (CT). We evaluated circulating regulatory T (Treg) cells using flow cytometry and correlated the findings with clinical outcomes. RESULTS: The incidence of pseudoprogression was 13.5%, and that of hyperprogression was 8.1%. On day 7 after initiation of treatment, the frequency of CD4+CD25+CD127loFoxP3+ Treg cells was significantly decreased compared with baseline (P = 0.038) in patients who experienced pseudoprogression and significantly increased compared with baseline (P = 0.024) in patients who experienced hyperprogression. In the responder group, the frequencies of CD4+CD25+CD127loFoxP3+ Treg cells and PD-1+CD4+CD25+CD127loFoxP3+ Treg cells were significantly decreased 7 days after commencement of treatment compared with baseline (P = 0.034 and P < 0.001, respectively). CONCLUSION: Circulating Treg cells represent a promising potential dynamic biomarker to predict efficacy and differentiate atypical responses, including pseudoprogression and hyperprogression, after immunotherapy in patients with NSCLC.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Recuento de Linfocitos , Terapia Molecular Dirigida , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T Reguladores/metabolismo , Anciano , Anciano de 80 o más Años , Biomarcadores , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunofenotipificación , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/etiología , Masculino , Persona de Mediana Edad , Pronóstico , Linfocitos T Reguladores/inmunología , Resultado del Tratamiento
9.
J Korean Med Sci ; 37(48): e338, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513052

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) is the most common metabolic complication of pregnancy. To define the altered pathway in GDM placenta, we investigated the transcriptomic profiles from human placenta between GDM and controls. METHODS: Clinical parameters and postpartum complications were reviewed in all participants. Differentially expressed canonical pathways were analyzed between the GDM and control groups based on transcriptomic analysis. CD4+ T, CD8+ T, and senescent T cell subsets were determined by flow cytometry based on staining for specific intracellular cytokines. RESULTS: Gene ontology analysis revealed that the placenta of GDM revealed upregulation of diverse mitochondria or DNA replication related pathways and downregulation of T-cell immunity related pathways. The maternal placenta of the GDM group had a higher proportion of CD4+ T and CD8+ T cells than the control group. Interestingly, senescent CD4+ T cells tended to increase and CD8+ T cells were significantly increased in GDM compared to controls, along with increased programmed cell death-1 (CD274+) expression. Programmed death-ligand 1 expression in syncytotrophoblasts was also significantly increased in patients with GDM. CONCLUSION: This study demonstrated increased proinflammatory T cells, senescent T cells and immune-check point molecules in GDM placentas, suggesting that changes in senescent T cells and immune-escape signaling might be related to the pathophysiology of GDM.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Linfocitos T CD8-positivos/metabolismo , Placenta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Citometría de Flujo
10.
Gerontology ; 67(5): 525-531, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690236

RESUMEN

BACKGROUND: Growth differentiation factor 15 (GDF15), induced by tissue inflammation and mitochondrial stress, has received significant attention as a biomarker of mitochondrial dysfunction and has been implicated in various age-related diseases. However, the association between circulating GDF15 and sarcopenia-associated outcomes in older adults remains to be established. AIM: To validate previous experimental data and to investigate the possible role of GDF15 in aging and muscle physiology in humans, this study examined serum GDF15 levels in relation to sarcopenia-related parameters in a cohort of older Asian adults. METHODS: Muscle mass and muscle function-related parameters, such as grip strength, gait speed, chair stands, and short physical performance battery score were evaluated by experienced nurses in 125 geriatric participants with or without sarcopenia. Sarcopenia was diagnosed using the Asian-specific cutoff points. Serum GDF15 levels were measured using an enzyme immunoassay kit. RESULTS: Serum GDF15 levels were not significantly different according to sarcopenia status, muscle mass, muscle strength, and physical performance and were not associated with the skeletal muscle index, grip strength, gait speed, time to complete 5 chair stands, and short physical performance battery score, regardless of adjustments for sex, age, and BMI. CONCLUSIONS: These findings indicate that the definite role of GDF15 on muscle metabolism observed in animal models might not be evident in humans and that elevated GDF15 levels might not predict the risk for sarcopenia, at least in older Asian adults.


Asunto(s)
Sarcopenia , Anciano , Animales , Estudios Transversales , Evaluación Geriátrica , Factor 15 de Diferenciación de Crecimiento , Fuerza de la Mano , Humanos , Fuerza Muscular , Músculo Esquelético , Sarcopenia/diagnóstico
11.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445344

RESUMEN

Thyroid hormones, including 3,5,3'-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Calcio/metabolismo , Mitocondrias/efectos de los fármacos , Triyodotironina/farmacología , Tejido Adiposo Pardo/metabolismo , Animales , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Femenino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos
12.
Diabetologia ; 63(4): 837-852, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31925461

RESUMEN

AIMS/HYPOTHESIS: Mitochondrial oxidative phosphorylation (OxPhos) is essential for energy production and survival. However, the tissue-specific and systemic metabolic effects of OxPhos function in adipocytes remain incompletely understood. METHODS: We used adipocyte-specific Crif1 (also known as Gadd45gip1) knockout (AdKO) mice with decreased adipocyte OxPhos function. AdKO mice fed a normal chow or high-fat diet were evaluated for glucose homeostasis, weight gain and energy expenditure (EE). RNA sequencing of adipose tissues was used to identify the key mitokines affected in AdKO mice, which included fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). For in vitro analysis, doxycycline was used to pharmacologically decrease OxPhos in 3T3L1 adipocytes. To identify the effects of GDF15 and FGF21 on the metabolic phenotype of AdKO mice, we generated AdKO mice with global Gdf15 knockout (AdGKO) or global Fgf21 knockout (AdFKO). RESULTS: Under high-fat diet conditions, AdKO mice were resistant to weight gain and exhibited higher EE and improved glucose tolerance. In vitro pharmacological and in vivo genetic inhibition of OxPhos in adipocytes significantly upregulated mitochondrial unfolded protein response-related genes and secretion of mitokines such as GDF15 and FGF21. We evaluated the metabolic phenotypes of AdGKO and AdFKO mice, revealing that GDF15 and FGF21 differentially regulated energy homeostasis in AdKO mice. Both mitokines had beneficial effects on obesity and insulin resistance in the context of decreased adipocyte OxPhos, but only GDF15 regulated EE in AdKO mice. CONCLUSIONS/INTERPRETATION: The present study demonstrated that the adipose tissue adaptive mitochondrial stress response affected systemic energy homeostasis via cell-autonomous and non-cell-autonomous pathways. We identified novel roles for adipose OxPhos and adipo-mitokines in the regulation of systemic glucose homeostasis and EE, which facilitated adaptation of an organism to local mitochondrial stress.


Asunto(s)
Adipocitos/metabolismo , Proteínas de Ciclo Celular/genética , Metabolismo Energético/genética , Obesidad/genética , Adipocitos/patología , Animales , Proteínas de Ciclo Celular/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Obesidad/prevención & control , Especificidad de Órganos/genética , Fosforilación Oxidativa
13.
Clin Endocrinol (Oxf) ; 93(3): 238-247, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32324283

RESUMEN

OBJECTIVE: Type 2 deiodinase (DIO2)-mediated thyroid hormone synthesis stimulates osteoblast activity and increases the expression of osteoblast differentiation markers, but there are no large cohort studies to identify the role of the DIO2 polymorphism in bone mineral density in humans. METHODS: To investigate the hypothesis that individuals with the DIO2 gene polymorphism are susceptible to osteoporosis, we assessed the polymorphism of the DIO2 gene in 7,524 Koreans drawn from the large-scale Ansan-Anseong cohort of the Korean Genome and Epidemiology Study. All of the participants underwent genotyping of the DIO2 Thr92Ala polymorphism (rs225014). RESULTS: A total of 6,022 participants were recruited; 1991 (33.0%) were homozygous for the Thr allele, 2,967 (49.3%) were heterozygous (Thr/Ala), and 1064 (17.7%) were homozygous for the Ala allele. The effects of the DIO2 Thr92Ala polymorphism on axial speed of sound (SOS) and the T-score in the tibia and radius were assessed, with age, gender, oestrogen status, body mass index (BMI), serum calcium, 25-hydroxyvitamin D, and parathyroid hormone (PTH) included as covariables. Female subjects carrying the DIO2 Thr92Ala polymorphism had significantly lower SOS and T-scores than control participants. Cox regression analysis revealed a significant relationship between the DIO2 polymorphism and diagnosis of osteoporosis in female participants. CONCLUSION: DIO2 Thr92Ala polymorphism is associated with decreased SOS and T-scores in the tibia of female subjects independent of other clinical parameters, where this indicates a potential functional role of DIO2 in the maintenance of bone mineral density.


Asunto(s)
Densidad Ósea , Yoduro Peroxidasa , Densidad Ósea/genética , Femenino , Humanos , Yoduro Peroxidasa/genética , Polimorfismo de Nucleótido Simple/genética , República de Corea , Hormonas Tiroideas , Yodotironina Deyodinasa Tipo II
14.
Biochem Biophys Res Commun ; 497(4): 957-962, 2018 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-29410095

RESUMEN

The importance of toll-like receptor (TLR) 4 in the pathogenesis of steatohepatitis has been well documented; however, little is known about the role of TLR3. In this study, we determined whether the depletion of TLR3 modulated hepatic injury in mice and further aimed to provide mechanistic insights into the TLR3-mediated modulation of diet-induced hepatic inflammation and fat accumulation. Hepatic steatosis and inflammatory response were induced by feeding wild-type (WT) or TLR3 knockout mice a high-fat diet for 8 weeks. Primary liver resident cells, including hepatocytes, Kupffer cells, and hepatic stellate cells (HSCs), were treated with palmitic acid. TLR3 knockout mice fed a high-fat diet showed severe hepatic inflammation accompanied by nuclear factor-κB and IRF3 activation, which is mainly induced by the activation of Kupffer cells. Decreased TLR4 expression was restored in hepatic mononuclear cells and Kupffer cells in TLR3 knockout mice compared to that in the WT. Moreover, hepatic steatosis was decreased in TLR3 knockout mice. Hepatocytes from TLR3 knockout mice exhibited reduced expression of cannabinoid receptors. HSCs from TLR3 knockout mice showed decreased expression of the enzymes involved in endocannabinoid synthesis. In conclusion, this study suggests that the selective modulation of TLR3 could be a novel therapeutic target for the treatment of hepatic inflammation and steatosis.


Asunto(s)
Hígado Graso/prevención & control , Inflamación/etiología , Hígado/patología , Receptor Toll-Like 3/fisiología , Animales , Dieta Alta en Grasa , Endocannabinoides/biosíntesis , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Ratones , Ratones Noqueados , Receptores de Cannabinoides , Receptor Toll-Like 3/deficiencia
16.
Biochim Biophys Acta Bioenerg ; 1858(8): 633-640, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28017650

RESUMEN

The mitochondrial role in carcinogenesis and cancer progression is an area of active research, with many unresolved questions. Various aspects of altered mitochondrial function have been implicated in tumorigenesis and tumor progression, including mitochondrial dysfunction, a metabolic switch to aerobic glycolysis, and dysregulation of mitophagy. Mitophagy is a highly specific quality control process which eliminates dysfunctional mitochondria and promotes mitochondrial turnover, and is involved in the adaptation to nutrient stress by controlling mitochondrial mass. The dysregulation of mitochondrial turnover has both a positive and negative role in cancer. This review will begin with a basic overview of the molecular mechanisms of mitophagy, and highlight recent trends in mitophagy from cancer studies. We will conclude this review by discussing areas of research in normal mitophagy that have yet to be explored in the context of cancer such as mitochondrial proteases, the mitochondrial unfolded protein response, and mitokine action. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Asunto(s)
Transformación Celular Neoplásica , Mitofagia , Neoplasias/metabolismo , Animales , Proteínas de Caenorhabditis elegans/fisiología , Progresión de la Enfermedad , Humanos , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Modelos Biológicos , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Neoplasias/etiología , Neoplasias/patología , Péptido Hidrolasas/fisiología , Isoformas de Proteínas/fisiología , Respuesta de Proteína Desplegada
17.
Lab Invest ; 97(4): 478-489, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28112758

RESUMEN

The functional unit of the thyroid gland, the thyroid follicle, dynamically responds to various stimuli to maintain thyroid hormone homeostasis. However, thyroid follicles in the adult human thyroid gland have a very limited regenerative capacity following partial resection of the thyroid gland. To gain insight into follicle regeneration in the adult thyroid gland, we observed the regeneration processes of murine thyroid follicles after partial resection of the lower third of the thyroid gland in 10-week-old male C57BL/6 mice. Based on sequential observation of the partially resected thyroid lobe, we found primitive follicles forming in the area corresponding to the central zone of the intact lateral thyroid lobe. The primitive thyroid follicles were multiciliated and had coarsely vacuolated cytoplasm and large vesicular nuclei. Consistently, these primitive follicular cells did not express the differentiation markers paired box gene-8 and thyroid transcription factor-1 (clone SPT24), but were positive for forkhead box protein A2 and leucine-rich repeat-containing G-protein-coupled receptor 4/GPR48. Follicles newly generated from the primitive follicles had clear or vacuolar cytoplasm with dense, darkly stained nuclei. At day 21 after partial thyroidectomy, the tall cuboidal follicular epithelial cells had clear or vacuolar cytoplasm, and the intraluminal colloid displayed pale staining. Smaller activated follicles were found in the central zone of the lateral lobe, whereas larger mature follicles were located in the peripheral zone. Based on these observations, we propose that the follicle regeneration process in the partially resected adult murine thyroid gland associated with the appearance of primitive follicular cells may be a platform for the budding of differentiated follicles in mice.


Asunto(s)
Regeneración , Glándula Tiroides/citología , Glándula Tiroides/fisiología , Tiroidectomía , Adulto , Animales , Cilios/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Glándula Tiroides/cirugía , Hormonas Tiroideas/sangre , Factores de Tiempo
18.
J Hepatol ; 66(1): 132-141, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27663419

RESUMEN

BACKGROUND & AIMS: To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD. METHODS: As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD+), we hypothesized that overactivation of PARPs drives NAD+ depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD+ and activate NAD+-dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD. RESULTS: The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD+ levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD+, increasing mitochondrial biogenesis and ß-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent. CONCLUSIONS: Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse models of NAFLD confer a protection against its development. PARP inhibitors may therefore represent a novel and practical pharmacological approach for treating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ftalazinas/farmacología , Piperazinas/farmacología , Animales , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo
19.
Hepatology ; 64(2): 616-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178735

RESUMEN

UNLABELLED: During liver injury, hepatocytes secrete exosomes that include diverse types of self-RNAs. Recently, self-noncoding RNA has been recognized as an activator of Toll-like receptor 3 (TLR3). However, the roles of hepatic exosomes and TLR3 in liver fibrosis are not yet fully understood. Following acute liver injury and early-stage liver fibrosis induced by a single or 2-week injection of carbon tetrachloride (CCl4 ), increased interleukin (IL)-17A production was detected primarily in hepatic γδ T cells in wild-type (WT) mice. However, liver fibrosis and IL-17A production by γδ T cells were both significantly attenuated in TLR3 knockout (KO) mice compared with WT mice. More interestingly, IL-17A-producing γδ T cells were in close contact with activated hepatic stellate cells (HSCs), suggesting a role for HSCs in IL-17A production by γδ T cells. In vitro treatments with exosomes derived from CCl4 -treated hepatocytes significantly increased the expression of IL-17A, IL-1ß, and IL-23 in WT HSCs but not in TLR3 KO HSCs. Furthermore, IL-17A production by γδ T cells was substantially increased upon coculturing with exosome-treated WT HSCs or conditioned medium from TLR3-activated WT HSCs. However, similar increases were not detected when γδ T cells were cocultured with exosome-treated HSCs from IL-17A KO or TLR3 KO mice. Using reciprocal bone marrow transplantation between WT and TLR3 KO mice, we found that TLR3 deficiency in HSCs contributed to decreased IL-17A production by γδ T cells, as well as liver fibrosis. CONCLUSION: In liver injury, the exosome-mediated activation of TLR3 in HSCs exacerbates liver fibrosis by enhancing IL-17A production by γδ T cells, which might be associated with HSC stimulation by unknown self-TLR3 ligands from damaged hepatocytes. Therefore, TLR3 might be a novel therapeutic target for liver fibrosis. (Hepatology 2016;64:616-631).


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Interleucina-17/metabolismo , Cirrosis Hepática/metabolismo , Linfocitos T/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Intoxicación por Tetracloruro de Carbono/metabolismo , Exosomas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
20.
Clin Endocrinol (Oxf) ; 85(5): 797-804, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27234487

RESUMEN

OBJECTIVE: Although the presence of oncocytic change in less than 75% of a tumour is not considered to indicate oncocytic variants of papillary thyroid carcinoma (PTC), we frequently observe partial oncocytic change, especially in obese PTC patients. Thus, we sought to investigate the relationship between the presence of oncocytic change of PTC and its prognosis. DESIGN, SETTING AND PARTICIPANTS: We retrospectively studied 142 patients with PTC who had undergone surgery between 2000 and 2005, and re-evaluated their PTC slides to record the proportion of oncocytic change in 10% increments from 0% to 100%. MAJOR OUTCOME MEASURE: We analysed the relationship between the proportion of oncocytic change and clinicopathological prognostic factors. RESULTS: Oncocytic change was found in 45·8% (65/142) of PTC patients. The proportion of patients with oncocytic change was higher in obese patients than in lean patients and showed a significant correlation with the BMI (r = 0·195, P = 0·020). The PTC patients with oncocytic change showed a higher recurrence rate than PTC patients without oncocytic change (30·8% vs 11·7%, respectively; P = 0·005). The presence of oncocytic change in PTC patients was associated with a shorter disease-free survival in a Kaplan-Meier analysis after a mean follow-up of 8·9 years. CONCLUSION: The patients with PTC with oncocytic change presented with a higher recurrence rate and were more likely to be obese. These findings suggest that presence of oncocytic change is a poor prognostic factor in PTC patients, even if the oncocytic change involves less than 75% of a tumour.


Asunto(s)
Carcinoma/patología , Células Oxífilas/patología , Neoplasias de la Tiroides/patología , Adulto , Carcinoma/mortalidad , Carcinoma Papilar , Recuento de Células , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad , Pronóstico , Estudios Retrospectivos , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA