Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(20): 3117-3126, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37525507

RESUMEN

The carcinogenicity of drugs can have a serious impact on human health, so carcinogenicity testing of new compounds is very necessary before being put on the market. Currently, many methods have been used to predict the carcinogenicity of compounds. However, most methods have limited predictive power and there is still much room for improvement. In this study, we construct a deep learning model based on capsule network and attention mechanism named DCAMCP to discriminate between carcinogenic and non-carcinogenic compounds. We train the DCAMCP on a dataset containing 1564 different compounds through their molecular fingerprints and molecular graph features. The trained model is validated by fivefold cross-validation and external validation. DCAMCP achieves an average accuracy (ACC) of 0.718 ± 0.009, sensitivity (SE) of 0.721 ± 0.006, specificity (SP) of 0.715 ± 0.014 and area under the receiver-operating characteristic curve (AUC) of 0.793 ± 0.012. Meanwhile, comparable results can be achieved on an external validation dataset containing 100 compounds, with an ACC of 0.750, SE of 0.778, SP of 0.727 and AUC of 0.811, which demonstrate the reliability of DCAMCP. The results indicate that our model has made progress in cancer risk assessment and could be used as an efficient tool in drug design.

2.
Comput Biol Med ; 165: 107414, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660567

RESUMEN

In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique for investigating cellular heterogeneity and structure. However, analyzing scRNA-seq data remains challenging, especially in the context of COVID-19 research. Single-cell clustering is a key step in analyzing scRNA-seq data, and deep learning methods have shown great potential in this area. In this work, we propose a novel scRNA-seq analysis framework called scAAGA. Specifically, we utilize an asymmetric autoencoder with a gene attention module to learn important gene features adaptively from scRNA-seq data, with the aim of improving the clustering effect. We apply scAAGA to COVID-19 peripheral blood mononuclear cell (PBMC) scRNA-seq data and compare its performance with state-of-the-art methods. Our results consistently demonstrate that scAAGA outperforms existing methods in terms of adjusted rand index (ARI), normalized mutual information (NMI), and adjusted mutual information (AMI) scores, achieving improvements ranging from 2.8% to 27.8% in NMI scores. Additionally, we discuss a data augmentation technology to expand the datasets and improve the accuracy of scAAGA. Overall, scAAGA presents a robust tool for scRNA-seq data analysis, enhancing the accuracy and reliability of clustering results in COVID-19 research.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Leucocitos Mononucleares , Reproducibilidad de los Resultados , Análisis por Conglomerados , Análisis de Datos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA