Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 73(6): 1391-1403, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32553668

RESUMEN

BACKGROUND AND AIMS: Biliary atresia (BA) is a poorly understood and devastating obstructive bile duct disease of newborns. It is often diagnosed late, is incurable and frequently requires liver transplantation. In this study, we aimed to investigate the underlying pathogenesis and molecular signatures associated with BA. METHODS: We combined organoid and transcriptomic analysis to gain new insights into BA pathobiology using patient samples and a mouse model of BA. RESULTS: Liver organoids derived from patients with BA and a rhesus rotavirus A-infected mouse model of BA, exhibited aberrant morphology and disturbed apical-basal organization. Transcriptomic analysis of BA organoids revealed a shift from cholangiocyte to hepatocyte transcriptional signatures and altered beta-amyloid-related gene expression. Beta-amyloid accumulation was observed around the bile ducts in BA livers and exposure to beta-amyloid induced the aberrant morphology in control organoids. CONCLUSION: The novel observation that beta-amyloid accumulates around bile ducts in the livers of patients with BA has important pathobiological implications, as well as diagnostic potential. LAY SUMMARY: Biliary atresia is a poorly understood and devastating obstructive bile duct disease of newborns. It is often diagnosed late, is incurable and frequently requires liver transplantation. Using human and mouse 'liver mini-organs in the dish', we unexpectedly identified beta-amyloid deposition - the main pathological feature of Alzheimer's disease and cerebral amyloid angiopathy - around bile ducts in livers from patients with biliary atresia. This finding reveals a novel pathogenic mechanism that could have important diagnostic and therapeutic implications.


Asunto(s)
Péptidos beta-Amiloides , Conductos Biliares , Atresia Biliar , Hepatocitos/metabolismo , Fragmentos de Péptidos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Conductos Biliares/metabolismo , Conductos Biliares/patología , Atresia Biliar/genética , Atresia Biliar/metabolismo , Atresia Biliar/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Organoides , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Transcriptoma
2.
Clin Chim Acta ; 551: 117621, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37925810

RESUMEN

BACKGROUND: Allan-Herndon-Dudley syndrome (MCT 8 deficiency) is an X-linked recessive condition caused by hemizygous pathogenic variants in SLC16A2 encoding the monocarboxylate transporter 8 (MCT8). Patients present with global developmental delay and neurological impairment, and abnormal serum thyroid function tests. The drug, 3,3',5 triiodothyroacetic acid (TRIAC), was recently demonstrated to improve the endocrinological profile. Improvement in diagnostic approach is key to earlier start of treatment. PATIENT FINDINGS: We described four Chinese patients with MCT8 deficiency undergoing different diagnostic odysseys. Their initial presentation included global developmental delay and dystonia. Patient 2 also had epilepsy. Patients 1 and 2 presented with two novel variants: (1)hemizygous NM_006517.4(SLC16A2):c.1170 + 2 T > A; p.(?), and (2)hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17) respectively. Patients 3 and 4 were biological brothers harboring hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17), which was first reported in 2004. We obtained the measurement of triiodothyronine (T3) and reverse T3 (rT3) from dried blood spot samples collected on Day 1 of life from Patient 1 and studied the biomarkers (rT3 and T3/rT3 ratio) proposed by Iwayama et al. for the detection of MCT8 deficiency at birth. Our data verified the significantly reduced rT3 level in Patient 1, compared with healthy newborns, although low T3 level and comparable T3/rT3 ratio with controls were detected. SUMMARY: Patients with MCT8 deficiency often undergo diagnostic odysseys. An early diagnosis could be missed by a normal newborn thyroid function screening result based on biochemical measurement of TSH and/or T4/fT4. Early detection of rT3 is key to improving current diagnostic approach. CONCLUSION: We recommend that full thyroid function profile (TSH, T4/fT4, T3/fT3, rT3) be considered early for all pediatric patients presenting with unexplained developmental delay and/or dystonia. The potential inclusion of rT3 measurement in newborn screening may prove promising.


Asunto(s)
Distonía , Simportadores , Recién Nacido , Masculino , Humanos , Niño , Hong Kong , Tamizaje Neonatal , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Tirotropina
3.
Surv Ophthalmol ; 67(5): 1516-1530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35181279

RESUMEN

In health care, virtual reality (VR) and augmented reality (AR) have been applied extensively for many purposes. Similar to other technologies such as telemedicine and artificial intelligence, VR and AR may improve clinical diagnosis and screening services in ophthalmology by alleviating current problems, including workforce shortage, diagnostic error, and underdiagnosis. In the past decade a number of studies and products have used VR and AR concepts to build clinical tests for ophthalmology, but comprehensive reviews on these studies are limited. Therefore, we conducted a systematic review on the use of VR and AR as a diagnostic and screening tool in ophthalmology. We identified 26 studies that implemented a variety of VR and AR tests on different conditions, including VR cover tests for binocular vision disorder, VR perimetry for glaucoma, and AR slit lamp biomicroscopy for retinal diseases. In general, while VR and AR tools can become standardized, automated, and cost-effective tests with good user experience, several weaknesses, including unsatisfactory accuracy, weak validation, and hardware limitations, have prevented these VR and AR tools from having wider clinical application. Also, a comparison between VR and AR is made to explain why studies have predominantly used VR rather than AR.


Asunto(s)
Realidad Aumentada , Oftalmología , Realidad Virtual , Inteligencia Artificial , Humanos
4.
BMC Rheumatol ; 3: 17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31161154

RESUMEN

BACKGROUND: A fatty corner lesion (FCL) is a well-demarcated fat infiltration in the corner of a vertebral body on T1 magnetic resonance imaging (MRI) sequence. It has been reported to be useful in the diagnosis of axial spondyloarthritis (axSpA). Our objective is to systematically evaluate the diagnostic accuracy of FCLs in tertiary centre patients with chronic back pain. METHOD: Two hundred and thirty eight axSpA patients and 62 non-axSpA patients with back pain were recruited from five rheumatology centres. Clinical, biochemical, and radiological parameters were collected and all patients underwent a MRI of the spine and sacroiliac (SI) joints. FCLs in vertebral bodies from C4 to L5 were scored. The number and location of FCLs were clustered together to determine an optimal combination for diagnosis. Results were compared with expert diagnosis as the "gold standard". RESULTS: FCLs of the anterior whole spine (AUC 0.62; p = 0.003) and anterior thoracic spine (AUC 0.64; p = 0.001) had diagnostic significance. Incorporating at least 5 whole spine FCLs into the imaging criteria of the Assessment of SpondyloArthritis international Society (ASAS) criteria for axSpA yielded a sensitivity of 91.6% and specificity of 91.9%. Similarly, applying at least 3 anterior thoracic FCLs to the imaging criteria of the ASAS axial SpA criteria yielded a sensitivity of 92.0% and specificity of 93.5%. CONCLUSION: FCLs could be used to diagnose axial SpA. The presence of at least 3 anterior thoracic FCLs in T1-weighted MRI spine suggests a diagnosis of axial SpA without additional MRI of the SI joints. TRIAL REGISTRATION: The cohort has been registered in the clinical trial registry of the University of Hong Kong (HKUCTR-2087).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA