Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 18(36): 6791-6799, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36040105

RESUMEN

Novel ionic shape memory polymer (SMP) gels were fabricated using SMPs and ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) at different weight ratios (WIL). The shape memory effect and sensor performance of the ionic SMP gels were investigated by means of thermomechanical and mechanoelectrical analyses. It was found that the ionic SMP gel at WIL = 25 wt% showed a shape memory effect with the shape fixing ratio (Rf) and shape recovery ratio (Rr) of 72.7% and 72.9%, respectively. Upon bending, the ionic SMP gel sensors with PEDOT:PSS electrodes generated an open circuit voltage of 3.3 mV and a charge of 1.6 nC which linearly increased with increasing bending displacement and velocity, respectively. Furthermore, the wearable shape memory multifunctional sensor array was demonstrated as a self-powered motion sensor for IoT applications.

2.
Plant J ; 93(6): 992-1006, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29356222

RESUMEN

Ammonium influx into plant roots via the high-affinity transport system (HATS) is down-modulated under elevated external ammonium, preventing ammonium toxicity. In ammonium-fed Arabidopsis, ammonium transporter 1 (AMT1) trimers responsible for HATS activity are allosterically inactivated in a dose-dependent manner via phosphorylation of the conserved threonine at the carboxyl-tail by the calcineurin B-like protein 1-calcineurin B-like protein-interacting protein kinase 23 complex and other yet unidentified protein kinases. Using transcriptome and reverse genetics in ammonium-preferring rice, we revealed the role of the serine/threonine/tyrosine protein kinase gene OsACTPK1 in down-modulation of HATS under sufficient ammonium. In wild-type roots, ACTPK1 mRNA and protein accumulated dose-dependently under sufficient ammonium. To determine the function of ACTPK1, two independent mutants lacking ACTPK1 were produced by retrotransposon Tos17 insertion. Compared with segregants lacking insertions, the two mutants showed decreased root growth and increased shoot growth under 1 mm ammonium due to enhanced ammonium acquisition, via aberrantly high HATS activity, and use. Furthermore, introduction of OsACTPK1 cDNA fused to the synthetic green fluorescence protein under its own promoter complemented growth and the HATS influx, and suggested plasma membrane localization. Root cellular expression of OsACTPK1 also overlapped with that of ammonium-induced OsAMT1;1 and OsAMT1;2. Meanwhile, threonine-phosphorylated AMT1 levels were substantially decreased in roots of ACTPK1-deficient mutants grown under sufficient ammonium. Bimolecular fluorescence complementation assay further confirmed interaction between ACTPK1 and AMT1;2 at the cell plasma membrane. Overall, these findings suggest that ACTPK1 directly phosphorylates and inactivates AMT1;2 in rice seedling roots under sufficient ammonium.


Asunto(s)
Compuestos de Amonio/metabolismo , Perfilación de la Expresión Génica , Oryza/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Plantones/genética , Transporte Biológico/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
3.
J R Soc Interface ; 19(193): 20220321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35919976

RESUMEN

Ciliary motility disorders are known to cause hydrocephalus. The instantaneous velocity of cerebrospinal fluid (CSF) flow is dominated by artery pulsation, and it remains unclear why ciliary dysfunction results in hydrocephalus. In this study, we investigated the effects of cilia-induced surface velocity on CSF flow using computational fluid dynamics. A geometric model of the human ventricles was constructed using medical imaging data. The CSF produced by the choroid plexus and cilia-induced surface velocity were given as the velocity boundary conditions at the ventricular walls. We developed healthy and reduced cilia motility models based on experimental data of cilia-induced velocity in healthy wild-type and Dpcd-knockout mice. The results indicate that there is almost no difference in intraventricular pressure between healthy and reduced cilia motility models. Additionally, it was found that newly produced CSF from the choroid plexus did not spread to the anterior and inferior horns of the lateral ventricles in the reduced cilia motility model. These findings suggest that a ciliary motility disorder could delay CSF exchange in the anterior and inferior horns of the lateral ventricles.


Asunto(s)
Cilios , Hidrocefalia , Animales , Líquido Cefalorraquídeo , Plexo Coroideo , Humanos , Hidrocefalia/etiología , Hidrodinámica , Ventrículos Laterales , Ratones
4.
Oxid Med Cell Longev ; 2017: 7308501, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098062

RESUMEN

To date, the types of mutations caused by 8-bromoguanine (8BrG), a major base lesion induced by reactive brominating species during inflammation, in human cells and the 8BrG repair system remain largely unknown. In this study, we performed a supF forward mutation assay using a shuttle vector plasmid containing a single 8BrG in three kinds of human cell lines and revealed that 8BrG in DNA predominantly induces a G → T mutation but can also induce G → C, G → A, and delG mutations in human cells. Next, we tested whether eight kinds of DNA glycosylases (MUTYH, MPG, NEIL1, OGG1, SMUG1, TDG, UNG2, and NTHL1) are capable of repairing 8BrG mispairs with any of the four bases using a DNA cleavage activity assay. We found that both the SMUG1 protein and the TDG protein exhibit DNA glycosylase activity against thymine mispaired with 8BrG and that the MUTYH protein exhibits DNA glycosylase activity against adenine mispaired with 8BrG. These results suggest that 8BrG induces some types of mutations, chiefly a G → T mutation, in human cells, and some DNA glycosylases are involved in the repair of 8BrG.


Asunto(s)
Guanina/análogos & derivados , Línea Celular Tumoral , Guanina/farmacología , Guanina/uso terapéutico , Humanos , Mutación , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA