Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568035

RESUMEN

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/virología , Cricetinae , Células Epiteliales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
2.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198317

RESUMEN

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Anticuerpos Antivirales , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Nature ; 603(7902): 700-705, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104835

RESUMEN

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fusión de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Animales , COVID-19/epidemiología , Línea Celular , Cricetinae , Humanos , Técnicas In Vitro , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/crecimiento & desarrollo , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia , Replicación Viral
4.
Nature ; 602(7896): 300-306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34823256

RESUMEN

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Asunto(s)
COVID-19/virología , Fusión de Membrana , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Cricetinae , Células Gigantes/metabolismo , Células Gigantes/virología , Masculino , Mesocricetus , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Virulencia/genética , Replicación Viral
5.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037386

RESUMEN

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Asunto(s)
Antivirales , Endonucleasas , Orthobunyavirus , Animales , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Endonucleasas/antagonistas & inhibidores , Humanos , Ratones , Orthobunyavirus/efectos de los fármacos , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Replicación Viral/efectos de los fármacos
6.
J Virol ; 97(10): e0101123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796123

RESUMEN

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Asunto(s)
Genoma Viral , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Genoma Viral/genética
7.
Microbiol Immunol ; 68(7): 237-247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837257

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the largest single-stranded RNA virus known to date. Its genome contains multiple accessory protein genes that act against host immune responses but are not required for progeny virus production. The functions of the accessory proteins in the viral life cycle have been examined, but their involvement in viral pathogenicity remains unclear. Here, we investigated the roles of the accessory proteins in viral immunopathogenicity. To this end, recombinant SARS-CoV-2 possessing nonsense mutations in the seven accessory protein open reading frames (ORFs) (ORF3a, ORF3b, ORF6, ORF7a, ORF8, ORF9b, and ORF10) was de novo generated using an early pandemic SARS-CoV-2 strain as a backbone. We confirmed that the resultant virus (termed ORF3-10 KO) did not express accessory proteins in infected cells and retained the desired mutations in the viral genome. In cell culture, the ORF3-10 KO virus exhibited similar virus growth kinetics as the parental virus. In hamsters, ORF3-10 KO virus infection resulted in mild weight loss and reduced viral replication in the oral cavity and lung tissue. ORF3-10 KO virus infection led to mild inflammation, indicating that an inability to evade innate immune sensing because of a lack of accessory proteins impairs virus growth in vivo and results in quick elimination from the body. Overall, we showed that SARS-CoV-2 accessory proteins are involved in immunopathogenicity.


Asunto(s)
COVID-19 , Sistemas de Lectura Abierta , SARS-CoV-2 , Replicación Viral , Animales , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , COVID-19/virología , COVID-19/inmunología , Humanos , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Células Vero , Cricetinae , Chlorocebus aethiops , Mesocricetus , Genoma Viral , Codón sin Sentido , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Microbiol Immunol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961765

RESUMEN

In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.

9.
Arch Virol ; 166(1): 275-280, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33201342

RESUMEN

The infectivity of shrew-borne hantaviruses to humans is still unclear because of the lack of a serodiagnosis method for these viruses. In this study, we prepared recombinant nucleocapsid (rN) proteins of Seewis orthohantavirus, Altai orthohantavirus (ALTV), Thottapalayam thottimvirus (TPMV), and Asama orthohantavirus. Using monospecific rabbit sera, no antigenic cross-reactivity was observed. In a serosurvey of 104 samples from renal patients and 271 samples from heathy controls from Sri Lanka, one patient serum and two healthy control sera reacted with rN proteins of ALTV and TPMV, respectively. The novel assays should be applied to investigate potential infectivity of shrew-borne hantaviruses to humans.


Asunto(s)
Infecciones por Hantavirus/inmunología , Infecciones por Hantavirus/virología , Orthohantavirus/inmunología , Musarañas/virología , Animales , Estudios de Casos y Controles , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de la Nucleocápside/inmunología , Filogenia , Virus ARN/inmunología , Conejos , Proteínas Recombinantes/inmunología , Pruebas Serológicas/métodos , Sri Lanka , Células Vero
10.
Uirusu ; 70(2): 175-184, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-34544932

RESUMEN

Chronic kidney disease of unknown etiology (CKDu) has emerged in endemic areas of Sri Lanka since the 1990s. The disease is a chronic but fatal disease. Until now, heavy metals and agrochemicals have been suspected as the cause of CKDu, but it has been still unknown. Recently, we have found a high seroprevalence to hantavirus in CKDu patients and reported that hantavirus infection is a risk of CKDu. Hantaviruses are rodent-borne zoonotic viruses. Here, I would like to introduce a story of the research from sero-epidemiology to the search for host animals.

11.
Arch Virol ; 163(6): 1577-1584, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29488118

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is caused by hantavirus infection. Although host immunity is thought to be involved in the pathogenesis of HFRS, the mechanism remains to be elucidated. A mouse model of HFRS, which showed renal hemorrhage similar to that seen in patients, has been developed previously. In this study, we aimed to clarify whether CD4+ and CD8+ T cells are involved in the development of renal hemorrhage in the mouse model. At 2 days before virus inoculation, CD4+ or CD8+ T cells in 6-week-old BALB/c mice were depleted by administration of antibodies. The CD4+ T cell-depleted mice developed signs of disease such as transient weight loss, ruffled fur and renal hemorrhage as in non-depleted mice. In contrast, the CD8+ T cell-depleted mice showed no signs of disease. After determination of CTL epitopes on the viral glycoprotein in BALB/c mice, the quantity of virus-specific CTLs was analyzed using an MHC tetramer. The quantity of virus-specific CTLs markedly increased in spleens and kidneys of virus-infected mice. However, the quantity in high-pathogenic clone-infected mice was comparable to that in low-pathogenic clone-infected mice. We previously reported that the high-pathogenic clone propagated more efficiently than the low-pathogenic clone in kidneys of mice during the course of infection. Therefore, there is a possibility that the balance between quantities of the target and effector is important for disease outcome. In conclusion, this study showed that CD8+ T cells are involved in the development of renal hemorrhage in a mouse model of HFRS.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Virus Hantaan/patogenicidad , Fiebre Hemorrágica con Síndrome Renal/virología , Riñón/virología , Linfocitos T Citotóxicos/virología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Femenino , Virus Hantaan/inmunología , Fiebre Hemorrágica con Síndrome Renal/inmunología , Fiebre Hemorrágica con Síndrome Renal/patología , Fiebre Hemorrágica con Síndrome Renal/prevención & control , Humanos , Riñón/irrigación sanguínea , Riñón/inmunología , Riñón/patología , Recuento de Linfocitos , Depleción Linfocítica , Ratones , Ratones Endogámicos BALB C , Péptidos/química , Péptidos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología
12.
Virol J ; 14(1): 13, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28122569

RESUMEN

BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus infection is characterized by fever, renal dysfunction and hemorrhage. An animal model mimicking symptoms of HFRS remains to be established. In this study, we evaluated the pathogenicity of an HFRS patient-derived Hantaan virus (HTNV) in adult mice. METHODS: Five clones of HTNV strain KHF 83-61 BL (KHFV) that was derived from blood of an HFRS patient were obtained by plaque cloning. The pathogenicity of the virus clones was evaluated by using 6-week-old female BALB/c mice. Sequence analysis of the viral genome was performed by conventional methods. RESULTS: All of the mice intravenously inoculated with KHFV clone (cl)-1, -2, -3 and -5 showed signs of disease such as transient body weight loss, ruffled fur, reduced activity and remarkably prominent hemorrhage in the renal medulla at 6 to 9 days post-inoculation (dpi) and then recovered. In contrast, mice intravenously inoculated with KHFV cl-4 did not show any signs of disease. We selected KHFV cl-5 and cl-4 as representative of high-pathogenic and low-pathogenic clones, respectively. Quantities of viral RNA in kidneys of KHFV cl-5-infected mice were larger than those in KHFV cl-4-infected mice at any time point examined (3, 6, 9 and 12 dpi). The quantities of viral RNA of KHFV cl-5 and cl-4 peaked at 3 dpi, which was before the onset of disease. Sequence analysis revealed that the amino acid at position 417 in the glycoprotein Gn was the sole difference in viral proteins between KHFV cl-5 and cl-4. The result suggests that amino acid at position 417 in Gn is related to the difference in pathogenicity between KHFV cl-5 and cl-4. When the inoculum of KHFV cl-5 was pretreated with a neutralizing antibody against HTNV strain 76-118, which belongs to the same serotype as KHFV clones, mice did not show any signs of disease, confirming that the disease was caused by KHFV infection. CONCLUSION: We found that an HFRS patient-derived HTNV caused renal hemorrhage in adult mice. We anticipate that this infection model will be a valuable tool for understanding the pathogenesis of HFRS.


Asunto(s)
Modelos Animales de Enfermedad , Virus Hantaan/patogenicidad , Hemorragia/patología , Fiebre Hemorrágica con Síndrome Renal/patología , Fiebre Hemorrágica con Síndrome Renal/virología , Riñón/patología , Animales , Femenino , Genoma Viral , Virus Hantaan/genética , Virus Hantaan/aislamiento & purificación , Humanos , Ratones Endogámicos BALB C , Oxalobacteraceae , Análisis de Secuencia de ADN
13.
Jpn J Vet Res ; 65(1): 39-44, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29791119

RESUMEN

Mongolia in 2010 and 2011. A total of 76 voles belonging to the genera Myodes and Microtus were captured. Most of the voles that were seropositive to Tula virus antigen were Middendorf's voles (Microtus middendorffii (6/31)). Two of the 18 Myodes voles were also seropositive to Tula virus antigen. On the other hand, only one vole was seropositive to Puumala virus antigen. The results suggest that Tula virus was maintained in Middendorf's vole. This is the first report of detection of anti-Tula virus antibody in the central part of the Eurasia continent.


Asunto(s)
Arvicolinae/sangre , Orthohantavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales , Arvicolinae/virología , Infecciones por Hantavirus/sangre , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Mongolia/epidemiología , ARN Viral , Enfermedades de los Roedores/sangre , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/virología
14.
J Virol ; 88(13): 7178-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24719427

RESUMEN

UNLABELLED: Hantavirus infections are characterized by vascular hyperpermeability and neutrophilia. However, the pathogenesis of this disease is poorly understood. Here, we demonstrate for the first time that pulmonary vascular permeability is increased by Hantaan virus infection and results in the development of pulmonary edema in C.B-17 severe combined immunodeficiency (SCID) mice lacking functional T cells and B cells. Increases in neutrophils in the lung and blood were observed when pulmonary edema began to be observed in the infected SCID mice. The occurrence of pulmonary edema was inhibited by neutrophil depletion. Moreover, the pulmonary vascular permeability was also significantly suppressed by neutrophil depletion in the infected mice. Taken together, the results suggest that neutrophils play an important role in pulmonary vascular hyperpermeability and the occurrence of pulmonary edema after hantavirus infection in SCID mice. IMPORTANCE: Although hantavirus infections are characterized by the occurrence of pulmonary edema, the pathogenic mechanism remains largely unknown. In this study, we demonstrated for the first time in vivo that hantavirus infection increases pulmonary vascular permeability and results in the development of pulmonary edema in SCID mice. This novel mouse model for human hantavirus infection will be a valuable tool and will contribute to elucidation of the pathogenetic mechanisms. Although the involvement of neutrophils in the pathogenesis of hantavirus infection has largely been ignored, the results of this study using the mouse model suggest that neutrophils are involved in the vascular hyperpermeability and development of pulmonary edema in hantavirus infection. Further study of the mechanisms could lead to the development of specific treatment for hantavirus infection.


Asunto(s)
Permeabilidad Capilar/inmunología , Infecciones por Hantavirus/complicaciones , Pulmón/inmunología , Ratones SCID/virología , Neutrófilos/inmunología , Orthohantavirus/patogenicidad , Edema Pulmonar/etiología , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Orthohantavirus/inmunología , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/inmunología , Infecciones por Hantavirus/virología , Humanos , Técnicas para Inmunoenzimas , Pulmón/virología , Ratones , Neutrófilos/metabolismo , Edema Pulmonar/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Linfocitos T/virología
15.
Virol J ; 11: 87, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24885901

RESUMEN

BACKGROUND: Hantaviruses are causative agents of hemorrhagic fever with renal syndrome (HFRS) and nephropathia epidemica (NE) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. There is a need for time-saving diagnostic methods. In the present study, recombinant N antigens were used as antigens in an immunochromatography strip (ICG) test to detect specific IgG antibodies. METHODS: The N-terminal 103 amino acids (aa) of Hantaan virus (HTNV), Puumala virus (PUUV) and Andes virus (ANDV) nucleocapsid (N) protein were expressed in E. coli as representative antigens of three groups (HFRS, NE and HPS-causing viruses) of hantavirus. Five different types of ICG test strips, one antigen line on one strip for each of the three selected hantaviruses (HTNV, PUUV and ANDV), three antigen lines on one strip and a mixed antigen line on one strip, were developed and sensitivities were compared. RESULTS: A total of 87 convalescent-phase patient sera, including sera from 35 HFRS patients, 36 NE patients and 16 HPS patients, and 25 sera from healthy seronegative people as negative controls were used to evaluate the ICG test. Sensitivities of the three-line strip and mixed-line strip were similar to those of the single antigen strip (97.2 to 100%). On the other hand, all of the ICG test strips showed high specificities to healthy donors. CONCLUSION: These results indicated that the ICG test with the three representative antigens is an effective serodiagnostic tool for screening and typing of hantavirus infection in humans.


Asunto(s)
Anticuerpos Antivirales/sangre , Cromatografía de Afinidad/métodos , Virus Hantaan/inmunología , Infecciones por Hantavirus/diagnóstico , Proteínas de la Nucleocápside , Orthohantavirus/inmunología , Virus Puumala/inmunología , Antígenos Virales/genética , Antígenos Virales/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Virus Hantaan/genética , Orthohantavirus/genética , Infecciones por Hantavirus/virología , Humanos , Inmunoglobulina G/sangre , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/aislamiento & purificación , Virus Puumala/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad
16.
Virology ; 598: 110170, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39003987

RESUMEN

The genus Orthonairovirus includes highly pathogenic tick-borne viruses such as the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV). A reverse genetics system is an indispensable tool for determining the viral factors related to pathogenicity. Tofla orthonairovirus (TFLV) is a recently identified virus isolated from ticks in Japan and our research has suggested that TFLV is a useful model for studying pathogenic orthonairoviruses. In this study, we successfully established a reverse genetics system for TFLV using T7 RNA polymerase. Recombinant TFLV was generated by transfecting cloned complementary DNAs encoding the TFLV genome into BSR T7/5 cells expressing T7 RNA polymerase. We were able to rescue infectious recombinant TFLV mutant (rTFLVmt) and wild-type TFLV (rTFLVpt) viruses, which exhibited indistinguishable growth kinetics in mammalian cells and pathogenicity in A129 mice compared with the authentic virus. Our approach provides a valuable method for establishing reverse genetics system for orthonairoviruses.

17.
iScience ; 27(5): 109647, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638572

RESUMEN

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.

18.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332154

RESUMEN

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Codón sin Sentido , Filogenia , SARS-CoV-2/genética , Bioensayo
19.
Emerg Infect Dis ; 19(1): 115-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23260149

RESUMEN

We amplified the complete genome of the rat hepatitis E virus (HEV) Vietnam strain (V-105) and analyzed the nucleotide and amino acid sequences. The entire genome of V-105 shared only 76.8%-76.9% nucleotide sequence identities with rat HEV strains from Germany, which suggests that V-105 is a new genotype of rat HEV.


Asunto(s)
Animales Salvajes/virología , Genoma Viral , Virus de la Hepatitis E/genética , Hepatitis E/virología , ARN Viral/genética , Ratas/virología , Animales , Secuencia de Bases , Cartilla de ADN , Genotipo , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , ARN Viral/clasificación , ARN Viral/aislamiento & purificación , Ratas Wistar , Homología de Secuencia de Ácido Nucleico , Vietnam
20.
Toxics ; 11(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37112589

RESUMEN

Wild rodents are natural hosts of Leptospira spp. and are exposed to various pesticides, some of which are immunotoxic. Rodent urine is an important source of infection for humans and other animals. We evaluated the effects of pesticide exposure on Leptospira growth in mice. Diazinon, at doses of 0.2, 1, and 5 mg/kg/day, was orally administered continuously to mice infected with Leptospira interrogans serogroup Hebdomadis for 32 days. The numbers of L. interrogans in urine and kidney tissues were significantly lower in mice exposed to 5 mg/kg/day diazinon than in unexposed mice (p < 0.05). The urinary concentration of 2-isopropyl-6-methyl-4-pyrimidinol, the metabolite of diazinon, was comparable with the concentration at which viability of L. interrogans was decreased in in vitro assay, suggesting that it had toxic effects on L. interrogans in the proximal renal tubules. Diazinon exposure reinforced Leptospira-induced expression of inflammatory cytokine genes in kidney tissues, and an enhanced immune system might suppress Leptospira growth. These results suggest that diazinon exposure may not increase the risk of Leptospira transmission to humans through mice. This novel study evaluated the relationship between pesticide exposure and Leptospira infection in mice, and the results could be useful for risk assessment of leptospirosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA