Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 22(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921580

RESUMEN

SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel ß-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo.


Asunto(s)
Bivalvos , Lectinas , Macrófagos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Lectinas/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Citocinas/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos
2.
Int J Biol Macromol ; 253(Pt 8): 127628, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37884254

RESUMEN

MytiLec-1, the recombinant form of a mussel lectin from Mytillus galloprovincialis, was purified by affinity chromatography and showed the maximum hemagglutination activity at a temperature range of 10 °C to 40 °C and at pH 7.0 to 9.0. Denaturants like urea and acidic-guanidine inhibited its hemagglutination activity significantly. MytiLec-1 was found to be metal-independent though Ca2+ slightly increased the activity of chelated MytiLec-1. The lectin suppressed 65 % growth of Pseudomonas aeruginosa (ATCC 47085) at 200 µg/ml and reduced the formation of biofilm (15 % at 200 µg/ml). Comparing to Shigella sonnei (ATCC 29930), Shigella boydii (ATCC 231903) and Shigella dysenteriae (ATCC 238135), Bacillus cereus (ATCC 14579) was slightly more sensitive to MytiLec-1. At a concentration of 200 µg/disc and 100 µg/ml, MytiLec-1 prevented the growth of Aspergillus niger and agglutinated the spores of Aspergillus niger and Trichoderma reesei, respectively. Amino acid sequences, physicochemical properties and antimicrobial activities of MytiLec-1 were compared with three other lectins (CGL, MTL and MCL from Crenomytilus grayanus, Mytilus trossulas and Mytilus californianus, respectively) from the mytilectin family of bivalve mollusks. It reconfirms the function of these lectins to recognize pathogens and perform important roles in innate immune response of mussels.


Asunto(s)
Antiinfecciosos , Mytilus , Animales , Lectinas/química , Mytilus/química , Disacáridos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA