Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932701

RESUMEN

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.

2.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086446

RESUMEN

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/patología , Metaloproteinasa 7 de la Matriz/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Prohibitinas , Microambiente Tumoral
3.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427305

RESUMEN

Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.


Asunto(s)
Andrógenos/metabolismo , Proteínas Hedgehog/metabolismo , Próstata/crecimiento & desarrollo , Nicho de Células Madre , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Hedgehog/genética , Masculino , Ratones , Próstata/citología , Próstata/metabolismo , RNA-Seq , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
4.
Hepatology ; 77(3): 774-788, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908246

RESUMEN

BACKGROUND AND AIMS: The sensitivity of current surveillance methods for detecting early-stage hepatocellular carcinoma (HCC) is suboptimal. Extracellular vesicles (EVs) are promising circulating biomarkers for early cancer detection. In this study, we aim to develop an HCC EV-based surface protein assay for early detection of HCC. APPROACH AND RESULTS: Tissue microarray was used to evaluate four potential HCC-associated protein markers. An HCC EV surface protein assay, composed of covalent chemistry-mediated HCC EV purification and real-time immuno-polymerase chain reaction readouts, was developed and optimized for quantifying subpopulations of EVs. An HCC EV ECG score, calculated from the readouts of three HCC EV subpopulations ( E pCAM + CD63 + , C D147 + CD63 + , and G PC3 + CD63 + HCC EVs), was established for detecting early-stage HCC. A phase 2 biomarker study was conducted to evaluate the performance of ECG score in a training cohort ( n  = 106) and an independent validation cohort ( n  = 72).Overall, 99.7% of tissue microarray stained positive for at least one of the four HCC-associated protein markers (EpCAM, CD147, GPC3, and ASGPR1) that were subsequently validated in HCC EVs. In the training cohort, HCC EV ECG score demonstrated an area under the receiver operating curve (AUROC) of 0.95 (95% confidence interval [CI], 0.90-0.99) for distinguishing early-stage HCC from cirrhosis with a sensitivity of 91% and a specificity of 90%. The AUROCs of the HCC EV ECG score remained excellent in the validation cohort (0.93; 95% CI, 0.87-0.99) and in the subgroups by etiology (viral: 0.95; 95% CI, 0.90-1.00; nonviral: 0.94; 95% CI, 0.88-0.99). CONCLUSION: HCC EV ECG score demonstrated great potential for detecting early-stage HCC. It could augment current surveillance methods and improve patients' outcomes.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Biomarcadores de Tumor/análisis , Vesículas Extracelulares/química , Proteínas de la Membrana , Electrocardiografía , Glipicanos
5.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296740

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Placenta Accreta , Enfermedades Placentarias , Embarazo , Femenino , Recién Nacido , Humanos , Placenta Accreta/terapia , Células Endoteliales , Placenta/patología , Enfermedades Placentarias/patología , Péptidos y Proteínas de Señalización Intercelular , Decidua/patología , Endotelio/patología
6.
Mol Ther ; 31(1): 78-89, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36045587

RESUMEN

Androgen receptor signaling inhibitors (ARSIs) are standard of care for advanced prostate cancer (PCa) patients. Eventual resistance to ARSIs can include the expression of androgen receptor (AR) splice variant, AR-V7, expression as a recognized means of ligand-independent androgen signaling. We demonstrated that interleukin (IL)-6-mediated AR-V7 expression requires bone morphogenic protein (BMP) and CD105 receptor activity in both PCa and associated fibroblasts. Chromatin immunoprecipitation supported CD105-dependent ID1- and E2F-mediated expression of RBM38. Further, RNA immune precipitation demonstrated RBM38 binds the AR-cryptic exon 3 to enable AR-V7 generation. The forced expression of AR-V7 by primary prostatic fibroblasts diminished PCa sensitivity to ARSI. Conversely, downregulation of AR-V7 expression in cancer epithelia and associated fibroblasts was achieved by a CD105-neutralizing antibody, carotuximab. These compelling pre-clinical findings initiated an interventional study in PCa patients developing ARSI resistance. The combination of carotuximab and ARSI (i.e., enzalutamide or abiraterone) provided disease stabilization in four of nine assessable ARSI-refractory patients. Circulating tumor cell evaluation showed AR-V7 downregulation in the responsive subjects on combination treatment and revealed a three-gene panel that was predictive of response. The systemic antagonism of BMP/CD105 signaling can support ARSI re-sensitization in pre-clinical models and subjects that have otherwise developed resistance due to AR-V7 expression.


Asunto(s)
Antagonistas de Receptores Androgénicos , Endoglina , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Humanos , Masculino , Resistencia a Antineoplásicos , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proteínas de Unión al ARN , Endoglina/antagonistas & inhibidores , Antagonistas de Receptores Androgénicos/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico
7.
J Allergy Clin Immunol ; 152(5): 1141-1152.e2, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562753

RESUMEN

BACKGROUND: Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE: It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS: We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS: We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS: C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.


Asunto(s)
Asma , Neumonía , Animales , Humanos , Ratones , Alérgenos/metabolismo , Asma/metabolismo , Complemento C1q/metabolismo , Células Dendríticas , Ratones Noqueados , Neumonía/metabolismo , Proteínas Tirosina Quinasas Receptoras , Receptores del Factor Estimulante de Colonias/metabolismo
8.
Mol Ther ; 30(1): 485-500, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450249

RESUMEN

Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo tumor suppressor pathway that regulates Yes-associated protein 1 (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulates YAP1/TAZ inhibition and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyperactivation of YAP1 in various cancers. Counter to the canonical tumor suppression role of STK3, we report that in the context of prostate cancer (PC), STK3 has a pro-tumorigenic role. Our investigation started with the observation that STK3, but not STK4, is frequently amplified in PC. Additionally, high STK3 expression is associated with decreased overall survival and positively correlates with androgen receptor (AR) activity in metastatic castrate-resistant PC. XMU-MP-1, an STK3/4 inhibitor, slowed cell proliferation, spheroid growth, and Matrigel invasion in multiple models. Genetic depletion of STK3 decreased proliferation in several PC cell lines. In a syngeneic allograft model, STK3 loss slowed tumor growth kinetics in vivo, and biochemical analysis suggests a mitotic growth arrest phenotype. To further probe the role of STK3 in PC, we identified and validated a new set of selective STK3 inhibitors, with enhanced kinase selectivity relative to XMU-MP-1, that inhibited tumor spheroid growth and invasion. Consistent with the canonical role, inhibition of STK3 induced cardiomyocyte growth and had chemoprotective effects. Our results indicate that STK3 has a non-canonical role in PC progression and that inhibition of STK3 may have a therapeutic potential for PC that merits further investigation.


Asunto(s)
Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas/genética , Serina/farmacología , Serina-Treonina Quinasa 3 , Transducción de Señal
9.
Immun Ageing ; 20(1): 71, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042785

RESUMEN

BACKGROUND: Memory CD8+ T cells expand with age. We previously demonstrated an age-associated expansion of effector memory (EM) CD8+ T cells expressing low levels of IL-7 receptor alpha (IL-7Rαlow) and the presence of its gene signature (i.e., IL-7Rαlow aging genes) in peripheral blood of older adults without Alzheimer's disease (AD). Considering age as the strongest risk factor for AD and the recent finding of EM CD8+ T cell expansion, mostly IL-7Rαlow cells, in AD, we investigated whether subjects with AD have alterations in IL-7Rαlow aging gene signature, especially in relation to genes possibly associated with AD and disease severity. RESULTS: We identified a set of 29 candidate genes (i.e., putative AD genes) which could be differentially expressed in peripheral blood of patients with AD through the systematic search of publicly available datasets. Of the 29 putative AD genes, 9 genes (31%) were IL-7Rαlow aging genes (P < 0.001), suggesting the possible implication of IL-7Rαlow aging genes in AD. These findings were validated by RT-qPCR analysis of 40 genes, including 29 putative AD genes, additional 9 top IL-7R⍺low aging but not the putative AD genes, and 2 inflammatory control genes in peripheral blood of cognitively normal persons (CN, 38 subjects) and patients with AD (40 mild cognitive impairment and 43 dementia subjects). The RT-qPCR results showed 8 differentially expressed genes between AD and CN groups; five (62.5%) of which were top IL-7Rαlow aging genes (FGFBP2, GZMH, NUAK1, PRSS23, TGFBR3) not previously reported to be altered in AD. Unbiased clustering analysis revealed 3 clusters of dementia patients with distinct expression levels of the 40 analyzed genes, including IL-7Rαlow aging genes, which were associated with neurocognitive function as determined by MoCA, CDRsob and neuropsychological testing. CONCLUSIONS: We report differential expression of "normal" aging genes associated with IL-7Rαlow EM CD8+ T cells in peripheral blood of patients with AD, and the significance of such gene expression in clustering subjects with dementia due to AD into groups with different levels of cognitive functioning. These results provide a platform for studies investigating the possible implications of age-related immune changes, including those associated with CD8+ T cells, in AD.

10.
Proteomics ; 22(4): e2100172, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34897998

RESUMEN

Prostate cancer (PC) is a major health and economic problem in industrialized countries, yet our understanding of the molecular mechanisms of PC progression and drug response remains limited. Accumulating evidence showed that certain E3 ubiquitin ligases such as SIAH2, RNF7, and SPOP play important roles in PC development and progression. However, the roles and mechanisms of other E3s in PC progression remain largely unexplored. Through an integration analysis of clinical genomic and transcriptomic profiles of PC tumors, this study identified UBR5 as a top PC-relevant E3 ubiquitin ligase whose expression levels are strongly associated with PC progression and aggressiveness. BoxCar and shotgun proteomic analyses of control and UBR5-knockdown PC3 cells complementarily identified 75 UBR5-regulated proteins. Bioinformatic analysis suggested that the 75 proteins form four molecular networks centered around FANCD2, PAF1, YY1, and LAMB3 via direct protein-protein interactions. Experimental analyses demonstrated that UBR5 associates with and downregulates two key DNA damage repair proteins (XRCC3 and FANCD2) and confers PC cell sensitivity to olaparib, a PARP inhibitor in clinical use for cancer therapy. This study represents the first application of BoxCar in PC research, provides new insights into the molecular functions of UBR5 in PC, and suggests that PC patients with UBR5-high tumors may potentially benefit from PARP inhibitor treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Antineoplásicos/farmacología , Humanos , Masculino , Proteínas Nucleares , Neoplasias de la Próstata/genética , Proteómica , Proteínas Represoras , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Breast Cancer Res ; 24(1): 7, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078507

RESUMEN

BACKGROUND: Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis. METHODS: The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis. RESULTS: KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival. CONCLUSIONS: This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratina-13/genética , Queratina-13/metabolismo , Ratones , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , gamma Catenina/genética , gamma Catenina/metabolismo
12.
Mol Carcinog ; 61(3): 334-345, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34818445

RESUMEN

Current advancements in prostate cancer (PC) therapies have been successful in slowing PC progression and increasing life expectancy; however, there is still no curative treatment for advanced metastatic castration resistant PC (mCRPC). Most treatment options target the androgen receptor, to which many PCs eventually develop resistance. Thus, there is a dire need to identify and validate new molecular targets for treating PC. We found NUAK family kinase 2 (NUAK2) expression is elevated in PC and mCRPC versus normal tissue, and expression correlates with an increased risk of metastasis. Given this observation and because NUAK2, as a kinase, is actionable, we evaluated the potential of NUAK2 as a molecular target for PC. NUAK2 is a stress response kinase that also plays a role in activation of the YAP cotranscriptional oncogene. Combining pharmacological and genetic methods for modulating NUAK2, we found that targeting NUAK2 in vitro leads to reduction in proliferation, three-dimensional tumor spheroid growth, and matrigel invasion of PC cells. Differential gene expression analysis of PC cells treated NUAK2 small molecule inhibitor HTH-02-006 demonstrated that NUAK2 inhibition results in downregulation of E2F, EMT, and MYC hallmark gene sets after NUAK2 inhibition. In a syngeneic allograft model and in radical prostatectomy patient derived explants, NUAK2 inhibition slowed tumor growth and proliferation rates. Mechanistically, HTH-02-006 treatment led to inactivation of YAP and the downregulation of NUAK2 and MYC protein levels. Our results suggest that NUAK2 represents a novel actionable molecular target for PC that warrants further exploration.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Serina-Treonina Quinasas
13.
Liver Transpl ; 28(2): 200-214, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34664394

RESUMEN

Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática en Estado Terminal , Neoplasias Hepáticas , Trasplante de Hígado , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/metabolismo , Pronóstico , ARN Mensajero/genética , Índice de Severidad de la Enfermedad
14.
J Gastroenterol Hepatol ; 37(7): 1179-1190, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35543075

RESUMEN

Serum alpha-fetoprotein and radiologic imaging are the most commonly used tests for early diagnosis and dynamic monitoring of treatment response in hepatocellular carcinoma (HCC). However, the accuracy of these tests is limited, and they may not reflect the underlying biology of the tumor. Thus, developing highly accurate novel HCC biomarkers reflecting tumor biology is a clinically unmet need. Circulating tumor cells (CTCs) have long been proposed as a noninvasive biomarker in clinical oncology. Most CTC assays utilize immunoaffinity-based, size-based, and/or enrichment-free mechanisms followed by immunocytochemical staining to characterize CTCs. The prognostic value of HCC CTC enumeration has been extensively validated. Subsets of CTCs expressing mesenchymal markers are also reported to have clinical significance. In addition, researchers have been devoting their efforts to molecular characterizations of CTCs (e.g. genetics and transcriptomics) as molecular profiling can offer a more accurate readout and provide biological insights. As new molecular profiling techniques, such as digital polymerase chain reaction, are developed to detect minimal amounts of DNA/RNA, several research groups have established HCC CTC digital scoring systems to quantify clinically relevant gene panels. Given the versatility of CTCs to provide intact molecular and functional data that reflects the underlying tumor, CTCs have great potential as a noninvasive biomarker in HCC. Large-scale, prospective studies for HCC CTCs with a standardized protocol are necessary for successful clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Biomarcadores , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células Neoplásicas Circulantes/patología , Medicina de Precisión , Estudios Prospectivos
15.
Opt Express ; 29(1): 182-207, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362108

RESUMEN

Single-molecule microscopy allows for the investigation of the dynamics of individual molecules and the visualization of subcellular structures at high spatial resolution. For single-molecule imaging experiments, and particularly those that entail the acquisition of multicolor data, calibration of the microscope and its optical components therefore needs to be carried out at a high level of accuracy. We propose here a method for calibrating a microscope at the nanometer scale, in the sense of determining optical aberrations as revealed by point source localization errors on the order of nanometers. The method is based on the imaging of a standard sample to detect and evaluate the amount of geometric aberration introduced in the optical light path. To provide support for multicolor imaging, it also includes procedures for evaluating the geometric aberration caused by a dichroic filter and the axial chromatic aberration introduced by an objective lens.

16.
Int J Med Sci ; 18(14): 3261-3270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400895

RESUMEN

Objectives: Bisphosphonates (BPs) are powerful inhibitors of osteoclastogenesis and are used to prevent osteoporotic bone loss and reduce the risk of osteoporotic fracture in patients suffering from postmenopausal osteoporosis. Patients with breast cancer or gynecological malignancies being treated with BPs or those receiving bone-targeted therapy for metastatic prostate cancer are at increased risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although BPs markedly ameliorate osteoporosis, their adverse effects largely limit the clinical application of these drugs. This study focused on providing a deeper understanding of one of the most popular BPs, the alendronate (ALN)-induced perturbation of the bone proteome and microenvironmental pathophysiology. Methods: To understand the molecular mechanisms underlying ALN-induced side-effects, an unbiased and global proteomics approach combined with big data bioinformatics was applied. This was followed by biochemical and functional analyses to determine the clinicopathological mechanisms affected by ALN. Results: The findings from this proteomics study suggest that the RIPK3/Wnt/GSK3/ß-catenin signaling pathway is significantly perturbed upon ALN treatment, resulting in abnormal angiogenesis, inflammation, anabolism, remodeling, and mineralization in bone cells in an in vitro cell culture system. Conclusion: Our investigation into potential key signaling mechanisms in response to ALN provides a rational basis for suppressing BP-induced adverse effect and presents various therapeutic strategies.


Asunto(s)
Alendronato/efectos adversos , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Conservadores de la Densidad Ósea/efectos adversos , Proteoma/efectos de los fármacos , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Huesos/efectos de los fármacos , Huesos/patología , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/complicaciones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Fracturas Osteoporóticas/etiología , Fracturas Osteoporóticas/prevención & control , Proteómica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
17.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948334

RESUMEN

Prostate cancer (PC) is a leading cause of morbidity and mortality among men worldwide. Molecular biomarkers work in conjunction with existing clinicopathologic tools to help physicians decide who to biopsy, re-biopsy, treat, or re-treat. The past decade has witnessed the commercialization of multiple PC protein biomarkers with improved performance, remarkable progress in proteomic technologies for global discovery and targeted validation of novel protein biomarkers from clinical specimens, and the emergence of novel, promising PC protein biomarkers. In this review, we summarize these advances and discuss the challenges and potential solutions for identifying and validating clinically useful protein biomarkers in PC diagnosis and prognosis. The identification of multi-protein biomarkers with high sensitivity and specificity, as well as their integration with clinicopathologic parameters, imaging, and other molecular biomarkers, bodes well for optimal personalized management of PC patients.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Próstata/metabolismo , Proteómica , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/diagnóstico
18.
Cell Immunol ; 355: 104155, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619811

RESUMEN

The IL-7 receptor alpha chain (IL-7Rα or CD127) can be differentially expressed in memory CD8+ T cells. Here we investigated whether IL-7Rα could serve as a key molecule in defining a comprehensive landscape of heterogeneity in human effector memory (EM) CD8+ T cells using high-dimensional Cytometry by Time-Of-Flight (CyTOF) and single-cell RNA-seq (scRNA-seq). IL-7Rα had diverse, but organized, expressional relationship in EM CD8+ T cells with molecules related to cell function and gene regulation, which rendered an immune landscape defining heterogeneous cell subsets. The differential expression of these molecules likely has biological implications as we found in vivo signatures of transcription factors and homeostasis cytokine receptors, including T-bet and IL-7Rα. Our findings indicate the existence of heterogeneity in human EM CD8+ T cells as defined by distinct but organized expression patterns of multiple molecules in relationship to IL-7Rα and its possible biological significance in modulating downstream events.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Adulto , Linfocitos T CD8-positivos/inmunología , Femenino , Citometría de Flujo/métodos , Humanos , Memoria Inmunológica , Subunidad alfa del Receptor de Interleucina-7/genética , Subunidad alfa del Receptor de Interleucina-7/inmunología , Masculino , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
19.
BMC Cancer ; 20(1): 398, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380981

RESUMEN

BACKGROUND: Metastatic prostate cancer (PC) is highly lethal. The ability to identify primary tumors capable of dissemination is an unmet need in the quest to understand lethal biology and improve patient outcomes. Previous studies have linked chromosomal instability (CIN), which generates aneuploidy following chromosomal missegregation during mitosis, to PC progression. Evidence of CIN includes broad copy number alterations (CNAs) spanning > 300 base pairs of DNA, which may also be measured via RNA expression signatures associated with CNA frequency. Signatures of CIN in metastatic PC, however, have not been interrogated or well defined. We examined a published 70-gene CIN signature (CIN70) in untreated and castration-resistant prostate cancer (CRPC) cohorts from The Cancer Genome Atlas (TCGA) and previously published reports. We also performed transcriptome and CNA analysis in a unique cohort of untreated primary tumors collected from diagnostic prostate needle biopsies (PNBX) of localized (M0) and metastatic (M1) cases to determine if CIN was linked to clinical stage and outcome. METHODS: PNBX were collected from 99 patients treated in the VA Greater Los Angeles (GLA-VA) Healthcare System between 2000 and 2016. Total RNA was extracted from high-grade cancer areas in PNBX cores, followed by RNA sequencing and/or copy number analysis using OncoScan. Multivariate logistic regression analyses permitted calculation of odds ratios for CIN status (high versus low) in an expanded GLA-VA PNBX cohort (n = 121). RESULTS: The CIN70 signature was significantly enriched in primary tumors and CRPC metastases from M1 PC cases. An intersection of gene signatures comprised of differentially expressed genes (DEGs) generated through comparison of M1 versus M0 PNBX and primary CRPC tumors versus metastases revealed a 157-gene "metastasis" signature that was further distilled to 7-genes (PC-CIN) regulating centrosomes, chromosomal segregation, and mitotic spindle assembly. High PC-CIN scores correlated with CRPC, PC-death and all-cause mortality in the expanded GLA-VA PNBX cohort. Interestingly, approximately 1/3 of M1 PNBX cases exhibited low CIN, illuminating differential pathways of lethal PC progression. CONCLUSIONS: Measuring CIN in PNBX by transcriptome profiling is feasible, and the PC-CIN signature may identify patients with a high risk of lethal progression at the time of diagnosis.


Asunto(s)
Aneuploidia , Biomarcadores de Tumor/genética , Inestabilidad Cromosómica/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Anciano , Anciano de 80 o más Años , Biopsia con Aguja/métodos , Bases de Datos Genéticas/estadística & datos numéricos , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/metabolismo , Análisis de Secuencia de ARN , Tasa de Supervivencia
20.
J Immunol ; 201(2): 359-370, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29794013

RESUMEN

Fibroblast-like synoviocytes (FLSs) play a key role in the progression of rheumatoid arthritis (RA) as a primary component of invasive hypertrophied pannus. FLSs of RA patients (RA-FLSs) exhibit cancer-like features, including promigratory and proinvasive activities that largely contribute to joint cartilage and bone destruction. In this study, we hypothesized that the NF of activated T cell 5 (NFAT5), a transcription factor involving tumor invasiveness, would control the migration and invasion of RA-FLSs. Analyses of transcriptomes demonstrated the significant involvement of NFAT5 in locomotion of RA-FLSs and that tissue factor (TF; also known as coagulation factor III) and CCL2 were the major downstream target genes of NFAT5 involving FLS migration and invasion. In cultured RA-FLSs, IL-1ß and TGF-ß increased TF and CCL2 expression by upregulating NFAT5 expression via p38 MAPK. Functional assays demonstrated that NFAT5- or TF-deficient RA-FLSs displayed decreased lamellipodia formation, cell migration, and invasion under IL-1ß- or TGF-ß-stimulated conditions. Conversely, factor VIIa, a specific activator of TF, increased migration of RA-FLSs, which was blocked by NFAT5 knockdown. Recombinant CCL2 partially restored the decrease in migration and invasion of NFAT5-deficient RA-FLSs stimulated with IL-1ß. NFAT5-knockout mouse FLSs also showed decreased expressions of TF and CCL2 and reduced cell migration. Moreover, KRN2, a specific inhibitor of NFAT5, suppressed migration of FLSs stimulated with TGF-ß. Conclusively, to our knowledge, this is the first study to provide evidence of a functional link between osmoprotective NFAT5 and TF in the migration and invasion of RA-FLSs and supports a role for NFAT5 blockade in the treatment of RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Movimiento Celular/fisiología , Quimiocina CCL2/metabolismo , Invasividad Neoplásica/patología , Sinoviocitos/metabolismo , Tromboplastina/metabolismo , Factores de Transcripción/metabolismo , Anciano , Animales , Artritis Reumatoide/patología , Células Cultivadas , Femenino , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Transducción de Señal/fisiología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/patología , Transcriptoma/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA