Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402423, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845523

RESUMEN

Electromagnetic protection in extreme environments requires materials with excellent thermal insulation capability and mechanical property to withstand severe temperature fluctuations and complex external stresses. Achieving strong electromagnetic wave absorption (EMA) while sustaining these exceptional properties remains a significant challenge. Herein, a facile approach is demonstrated to fabricate a biomimetic leaf-vein MXene/CNTs/PI (MCP) aerogel with parallel venations through bidirectional freeze-casting method. Due to its multi-arch lamellar structure and parallel venations within the aerogel layers, the ultralight MCP aerogel (16.9 mg·cm-3) achieves a minimum reflection loss (RLmin) of -75.8 dB and a maximum effective absorption bandwidth (EABmax) of 7.14 GHz with an absorber content of only 2.4 wt%, which also exhibits superelasticity and structural stability over a wide temperature range from -196 to 400 °C. Moreover, this unique structure facilitates rapid heat dissipation within the layers, while significantly impeding heat transfer between adjacent layers, achieving an ultralow thermal conductivity of 15.3 mW·m-1·K-1 for thermal superinsulation. The combination of excellent EMA performance, robust structural stability, and thermal superinsulation provides a potential design scheme under extreme conditions, especially in aerospace applications.

2.
Phys Chem Chem Phys ; 26(13): 9871-9879, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38168951

RESUMEN

Graphene oxide (GO) has attracted substantial interest for its tunable properties and as a possible intermediate for the bulk manufacture of graphene. GO and its reduced derivatives display electronic and optical properties that depend strongly on their chemical structure, and with proper functionalization, GO can have a desirable bandgap for semiconductor applications. However, its chemical activity leads to a series of unclear chemical changes under ambient conditions, resulting in changes in color and solubility upon exposure to light. In this paper, we study the properties of fresh and spontaneously reduced GO under ambient conditions using tip-enhanced Raman spectroscopy (TERS) to map its nanometer scale chemical and structural heterogeneity. We observe different types of defect sites on reduced GO (rGO) by spatially mapping the D to G band peak ratio and D and G band spectral positions. The higher spatial resolution and out-of-plane polarization compared to conventional micro-Raman spectroscopy enables us to resolve unusual features, including D-band shifting on rGO. Based on statistical analysis of the spatial variations in modes and theoretical calculations for different functional groups, we conclude the reduction mechanism of GO is a self-photocatalytic reduction with the participation of water and visible light, in which the rate determining step is electron transport through the metal substrate and ion diffusion on the GO surface. These results demonstrate that TERS can reveal structural and chemical details elucidating reduction mechanisms, through the examination of samples at different time points.

3.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38284657

RESUMEN

Potassium (K) is an essential nutrient for plant growth, and despite its abundance in soil, most of the K is structurally bound in minerals, limiting its bioavailability and making this soil K reservoir largely inaccessible to plants. Microbial biochemical weathering has been shown to be a promising pathway to sustainably increase plant available K. However, the mechanisms underpinning microbial K uptake, transformation, storage, and sharing are poorly resolved. To better understand the controls on microbial K transformations, we performed K K-edge x-ray absorption near-edge structure (XANES) spectroscopy on K-organic salts, including acetate, citrate, nitrate, oxalate, and tartrate, which are frequently observed as low molecular weight organic acids secreted by soil microbes, as well as humic acid, which acts as a proxy for higher molecular weight organic acids. The organic salts display feature-rich K XANES spectra, each demonstrating numerous unique features spanning ∼13 eV range across the absorption edge. In contrast, the spectra for humic acid have one broad, wide feature across the same energy range. We used a combination of time-dependent density functional theory and the Bethe-Salpeter equation based approach within the OCEAN code to simulate the experimental spectra for K-nitrate (KNO3) and K-citrate [K3(C6H5O7)·H2O] to identify the electronic transitions that give rise to some of the outlying and unique spectral features in the organic salts. KNO3 has both the lowest and highest lying energy features, and K3(C6H5O7)·H2O is produced by several soil microbes and is effective at mineral weathering. Our results analyze the K-organic salt bonding in detail to elucidate why the spectral shapes differ and indicate that the K K-edge XANES spectra are associated with the entire ligand despite similar first-shell bonding environments around the K center. The improved understanding of K bonding environments with organic ligands and their use for interpretation of the K-XANES spectra provides an important toolkit to understand how K is transformed by microbial processes and made bioavailable for plant uptake.

4.
BMC Womens Health ; 24(1): 372, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918774

RESUMEN

BACKGROUND: To investigate the impact of chronic endometritis (CE) on the recurrence of endometrial polyps (EPs) in premenopausal women after transcervical resection of endometrial polyps (TCRP). METHODS: This prospective study enrolled 507 women who underwent TCRP between January 1, 2022 and December 31, 2022. The patients were divided into a CE group (n = 133) and non-CE group (n = 374) based on the expression of CD138 in the endometrium. The EP recurrence rate at 1 year after TCRP was compared between the CE and non-CE groups and between groups with mild CE and severe CE. The impact of CD138 expression by resected EPs on EP recurrence also was investigated. RESULTS: The EP recurrence rate at 1 year post-TCRP was higher in the CE group than in the non-CE group (25.6% vs. 10.4%) and also higher in the severe CE group than in the mild CE group (34.5% vs. 18.7%). Additionally, the EP recurrence rate was higher among patients with CD138-expressing EPs than among those with EPs lacking CD138 expression (30.5% vs. 6.5%). The odds ratio (OR) for EP recurrence in the CE cohort compared with the non-CE cohort was 3.10 (95% confidence interval [CI] 1.84-5.23) after adjustment for EP number and precautions against EP recurrence. The ORs for EP recurrence in patients with mild CE and severe CE were 2.21 (95%CI 1.11-4.40) and 4.32 (95%CI 2.26-8.26), respectively. Similarly, the OR for EP recurrence in cases with CD138-expressing EPs relative to cases with EPs lacking CD138 expression was 6.22 (95%CI 3.59-10.80) after adjustment for EP number and precautions against EP recurrence. CONCLUSIONS: CE multiplied the recurrence rate of EPs in premenopausal women after TCRP, and this effect positively correlated with CE severity. CD138 expression by EPs also was associated with a higher risk for EP recurrence.


Asunto(s)
Endometritis , Pólipos , Recurrencia , Humanos , Femenino , Estudios Prospectivos , Adulto , Pólipos/cirugía , Endometritis/epidemiología , Endometritis/etiología , Enfermedad Crónica , Sindecano-1/metabolismo , Persona de Mediana Edad , Enfermedades Uterinas/cirugía , Enfermedades Uterinas/etiología , Factores de Riesgo
5.
Food Microbiol ; 123: 104566, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038883

RESUMEN

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Asunto(s)
Bacterias , Fermentación , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , Microbiota , Filogenia , ADN Bacteriano/genética , Biodiversidad , Bebidas Alcohólicas/microbiología , Bebidas Alcohólicas/análisis , Microbiología de Alimentos , Metagenoma , Alimentos Fermentados/microbiología
6.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999186

RESUMEN

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Asunto(s)
Metabolómica , Micorrizas , Panax notoginseng , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triterpenos , Panax notoginseng/microbiología , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Micorrizas/metabolismo , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análisis de Componente Principal , Metaboloma
7.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474620

RESUMEN

Hyperlipidemia, characterized by elevated serum lipid concentrations resulting from lipid metabolism dysfunction, represents a prevalent global health concern. Ginsenoside Rb1, compound K (CK), and 20(S)-protopanaxadiol (PPD), bioactive constituents derived from Panax ginseng, have shown promise in mitigating lipid metabolism disorders. However, the comparative efficacy and underlying mechanisms of these compounds in hyperlipidemia prevention remain inadequately explored. This study investigates the impact of ginsenoside Rb1, CK, and PPD supplementation on hyperlipidemia in rats induced by a high-fat diet. Our findings demonstrate that ginsenoside Rb1 significantly decreased body weight and body weight gain, ameliorated hepatic steatosis, and improved dyslipidemia in HFD-fed rats, outperforming CK and PPD. Moreover, ginsenoside Rb1, CK, and PPD distinctly modified gut microbiota composition and function. Ginsenoside Rb1 increased the relative abundance of Blautia and Eubacterium, while PPD elevated Akkermansia levels. Both CK and PPD increased Prevotella and Bacteroides, whereas Clostridium-sensu-stricto and Lactobacillus were reduced following treatment with all three compounds. Notably, only ginsenoside Rb1 enhanced lipid metabolism by modulating the PPARγ/ACC/FAS signaling pathway and promoting fatty acid ß-oxidation. Additionally, all three ginsenosides markedly improved bile acid enterohepatic circulation via the FXR/CYP7A1 pathway, reducing hepatic and serum total bile acids and modulating bile acid pool composition by decreasing primary/unconjugated bile acids (CA, CDCA, and ß-MCA) and increasing conjugated bile acids (TCDCA, GCDCA, GDCA, and TUDCA), correlated with gut microbiota changes. In conclusion, our results suggest that ginsenoside Rb1, CK, and PPD supplementation offer promising prebiotic interventions for managing HFD-induced hyperlipidemia in rats, with ginsenoside Rb1 demonstrating superior efficacy.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Hiperlipidemias , Sapogeninas , Ratas , Animales , Ginsenósidos/metabolismo , Dieta Alta en Grasa , Metabolismo de los Lípidos , Peso Corporal , Ácidos y Sales Biliares
8.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650452

RESUMEN

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Clorofila A , Nitrógeno/metabolismo , Té/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
J Org Chem ; 88(8): 5052-5058, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35880952

RESUMEN

An efficient and environmentally friendly synthetic approach to prepare thiazolidine-2-imine and oxazolidine-2-one derivatives has been developed. Thiazolidine-2-imines are synthesized in good to excellent yields by [3 + 2] annulation of p-quinamines with isothiocyanates under catalyst- and solvent-free conditions. Oxazolidine-2-ones are produced in good to excellent yields via [3 + 2] annulation of p-quinamines with CO2 using triethylenediamine (DABCO) as an organocatalyst. Furthermore, this strategy can be performed on a gram scale and tolerate a wide range of functional groups.

10.
Epilepsy Behav ; 140: 109101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736237

RESUMEN

OBJECTIVE: The white matter structural network changes remain poorly understood in patients with temporal lobe epilepsy and comorbid headache (PWH). This study aimed at exploring topological changes in the structural network. METHODS: Twenty-five PWH, 32 patients with temporal lobe epilepsy without headache, and 22 healthy controls were recruited in this study. High-resolution structural MRI and diffusion tensor imaging data were acquired from these participants. A graph theory-based approach was employed to characterize the topological properties of the structural network. A network-based statistical analysis was employed to explore abnormal connectivity alterations in PWH. RESULTS: Compared with healthy controls, PWH exhibited significantly decreased small-world index, shortest path length, increased clustering coefficient, global efficiency, and local efficiency. Patients with temporal lobe epilepsy and comorbid headache displayed a significantly reduced small-world index, shortest path length, and increased global efficiency when compared with patients with temporal lobe epilepsy without headache. In addition, PWH exhibited abnormal local network parameters, mainly located in the prefrontal, temporal, occipital, and parietal regions. Furthermore, network-based statistical analysis revealed that PWH had abnormal structural connections between the temporoparietal lobe, occipital lobe, insula, cingulate gyrus, and thalamus. CONCLUSION: This study reveals the abnormal white matter structural network alterations in PWH, allowing a better insight into the neuroanatomical mechanisms that predispose epileptic patients to comorbid headaches from the network levels.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Cefalea/complicaciones , Cefalea/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
11.
J Org Chem ; 87(23): 16039-16046, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379013

RESUMEN

Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.


Asunto(s)
Fluorobencenos , Paladio , Paladio/química , Modelos Moleculares , Ligandos
12.
Inorg Chem ; 61(39): 15589-15599, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36112943

RESUMEN

As known, actinyl peroxides play important roles in environmental transport of actinides, and they have strategic importance in the application of nuclear industry. Compared to the most studied uranyl peroxides, the studies of transuranic counterparts are still few, and more information about these species is needed. In this work, experimentally inspired actinyl peroxide dimers ([An2O6]2+, An = U, Np, and Pu) have been studied and analyzed by using density functional theory and multireference wave function methods. This study determines that the three [An2O6]2+ have unique electronic structures and oxidation states, as [(UVIO2)2(O2)2-]2+, [(NpVIIO2)2(O2-)2]2+, and mixed-valent [(PuVI/VO2)2(O2)1-]2+. This study demonstrates the significance of two bridging oxo ligands with at most four electron holes availability in ionically directing actinyl and resulting in the unusual multiradical bonding in [(PuVI/VO2)2(O2)1-]2+. In addition, thermodynamically stable 12-crown-4 ether (12C4) chelated [(An2O6)(12C4)2]2+ complexes have been predicted, that could maintain these unique electronic structures of [An2O6]2+, where the An ← O12C4 dative bonding shows a trend in binding capacity of 12C4 from κ4 (U) to κ3 (Np) and κ4 (Pu). This study reveals the interesting electronic character and bonding feature of a series of early actinide elements in peroxide complexes, which can provide insights into the intrinsic stability of An-containing species.

13.
J Phys Chem A ; 126(35): 5881-5889, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35968816

RESUMEN

Cells are heterogeneous on every length and time scale; cytosol contains thousands of proteins, lipids, nucleic acids, and small molecules, and molecular interactions within this crowded environment determine the structure, dynamics, and stability of biomolecules. For decades, the effects of crowding at the atomistic scale have been overlooked in favor of more tractable models largely based on thermodynamics. Crowding can affect the conformations and stability of biomolecules by modulating water structure and dynamics within the cell, and these effects are nonlocal and environment dependent. Thus, characterizing water's hydrogen-bond (H-bond) networks is a critical step toward a complete microscopic crowding model. This perspective provides an overview of molecular crowding and describes recent time-resolved spectroscopy approaches investigating H-bond networks and dynamics in crowded or otherwise complex aqueous environments. Ultrafast spectroscopy combined with atomistic simulations has emerged as a powerful combination for studying H-bond structure and dynamics in heterogeneous multicomponent systems. We discuss the ongoing challenges toward developing a complete atomistic description of macromolecular crowding from an experimental as well as a theoretical perspective.


Asunto(s)
Agua , Química Física , Enlace de Hidrógeno , Conformación Molecular , Termodinámica , Agua/química
14.
J Chem Phys ; 156(7): 075102, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183070

RESUMEN

Inverted-headgroup (choline-phosphate) lipids are synthetic lipids that are not found in nature and are used as model systems to understand the role of headgroup dipole orientation. Recently, studies revealed that the net orientation of interfacial water strongly depends on the headgroup electrostatics, i.e., the charges and dipole generated by the phosphate and the choline groups. In order to characterize interfacial H-bond dynamics, we measured two-dimensional infrared spectra of the ester carbonyl band and performed molecular dynamics simulations in fully hydrated 1,2-dioleoyl-sn-glycero-3-phosphocholine and 2-((2,3-bis(oleoyloxy)propyl)-dimethyl-ammonio)ethyl ethyl phosphate (DOCPe) lipid bilayers. The experiments and simulations suggest that the reverse dipole generated by the inverted-headgroup in DOCPe does not affect the carbonyl H-bond populations or the interfacial water H-bond dynamics. However, while phosphate-associated waters in both lipids appear to show a similar H-bond structure, carbonyl-associated waters are characterized by a slightly disrupted H-bond structure in the DOCPe bilayer, especially within the second hydration shell. Our findings show that changes in net water orientation perturb the water H-bonds at the linker region between the headgroup and the lipid tail, although this perturbation is weak.

15.
Curr Microbiol ; 79(12): 382, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329315

RESUMEN

BJC16-A38T, a Gram-negative, aerobic and non-motile rod-shaped strain was isolated from a permafrost wetland soil sample. BJC16-A38T was oxidase- and catalase-positive, and produced pale yellow colonies on modified R2A agar plates. The 16S rRNA gene sequence of BJC16-A38T shared the highest sequence similarity with those of Mucilaginibacter xinganensis BJC16-A31T (97.44%), Mucilaginibacter gotjawali SA3-7T (96.79%) and Mucilaginibacter frigoritolerans FT22T (96.14%). Phylogenetic analysis revealed that BJC16-A38T formed a separate lineage together with strain M. xinganensis BJC16-A31T in the genus Mucilaginibacter. BJC16-A38T contained menaquinone-7 (MK-7) as the predominant isoprenoid quinine. Major fatty acids in cells were iso-C15:0, summed feature 3 (16:1ω7c/16:1ω6c) and iso-C17:03-OH. BJC16-A38T contained phosphatidylethanolamine, two unknown polar lipids, six unidentified phospholipids and an unidentified aminolipid. The Genome of BJC16-A38T was sequenced using the Genome Analyzer IIx sequence platform and 38 contigs were produced in total with an average G + C percentage of 44.00%. The average nucleotide identity (ANI) of BJC16-A38T with respect to those of M. xinganensis BJC16-A31T, M. gotjawali SA3-7T and M. frigoritolerans FT22T were 79.60%, 77.24% and 77.58%, respectively. Digital DNA-DNA hybridization (DDH) values between BJC16-A38T and the tree reference strains were 21.30%, 19.60% and 19.70%, respectively. BJC16-A38T exhibited phenanthrene biodegradation activity that can degrade 88.02% phenanthrene in the MM medium after 7 days cultivation. Phenotypic, chemotaxonomic, phylogenetic and genomic characteristics concluded that strain BJC16-A38T represents a novel species of the genus Mucilaginibacter. Hence, the name Mucilaginibacter phenanthrenivorans sp. nov. is proposed. The type strain is BJC16-A38T (= CGMCC 1.12693T = NBRC 110383T).


Asunto(s)
Fenantrenos , Suelo , ARN Ribosómico 16S/genética , Filogenia , Humedales , Microbiología del Suelo , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Ácidos Grasos/metabolismo , Vitamina K 2
16.
BMC Plant Biol ; 21(1): 506, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727870

RESUMEN

BACKGROUND: Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS: In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS: The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.


Asunto(s)
Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Cromatografía de Gases , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Espectrometría de Masas , Metaboloma , Metabolómica , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo
17.
Exp Cell Res ; 395(2): 112182, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32707135

RESUMEN

The NUDT family is thought to play an important role in cancer growth and progression. However, the clinicopathologic significance and potential role of nucleotide diphosphate-linked X-component motif 21, NM_007006 (NUDT21) in pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. In this study, we observed that NUDT21 was frequently up-expressed in PDAC. Clinical data revealed that its level positively correlated with poor survival of patients with PDAC. We found that knockdown of NUDT21 significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. Screening by microarray analysis and verifying by Western blot, we found that the EIF2 signaling pathway represented the main molecular mechanism underlying the effects of NUDT21 knockdown in PANC-1 cells, and PKR, HSPA5, EIF4E and DDIT3 may be its target genes. Thus, our results revealed for the first time that NUDT21, a valuable marker of PDAC prognosis, promotes tumor proliferation, inhibits cells apoptosis and might represent a potential target for gene-based therapy.


Asunto(s)
Apoptosis/genética , Carcinoma Ductal Pancreático/genética , Proliferación Celular/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias Pancreáticas , Neoplasias Pancreáticas
18.
J Asian Nat Prod Res ; 23(9): 819-824, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32646247

RESUMEN

Three new phlorizin derivatives, 6"-O-vanilloylphlorizin (1), 6"-O-(4-hydroxybenzoyl)phlorizin (2), 6"-O-feruloylphlorizin (3), along with four known dihydrochalcones, phlorizin (4), 3-hydroxyphlorizin, trilobatin, and 6"-O-acetylphlorizin were isolated from the leaves of Lithocarpus litseifolius. Their structures were established by analysis of extensive spectroscopic data. The new compounds were shown to be non-cytotoxic when tested against A549, HeLa, HepG2, and MCF-7 cell lines.


Asunto(s)
Chalconas , Fagaceae , Chalconas/farmacología , Estructura Molecular , Hojas de la Planta
19.
Appl Soft Comput ; 102: 107118, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36570416

RESUMEN

Network teaching has been widely developed under the influence of COVID-19 pandemic to guarantee the implementation of teaching plans and protect the learning rights of students. Selecting a particular website for network teaching can directly affects end users' performance and promote network teaching quality. Normally, e-learning website selection can be considered as a complex multi-criteria decision making (MCDM) problem, and experts' evaluations over the performance of e-learning websites are often imprecise and fuzzy due to the subjective nature of human thinking. In this article, we propose a new integrated MCDM approach on the basis of linguistic hesitant fuzzy sets (LHFSs) and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) method to evaluate and select the best e-learning website for network teaching. This introduced method deals with the linguistic assessments of experts based on the LHFSs, determines the weights of evaluation criteria with the best-worst method (BWM), and acquires the ranking of e-learning websites utilizing an extended TODIM method. The applicability and superiority of the presented linguistic hesitant fuzzy TODIM (LHF-TODIM) approach are demonstrated through a realistic e-learning website selection example. Results show that the LHF-TODIM model being proposed is more practical and effective for solving the e-learning website selection problem under vague and uncertain linguistic environment.

20.
Chemphyschem ; 21(3): 188-193, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31912640

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) is a promising technique for structural studies of biological systems and biomolecules, owing to its ability to provide a chemical fingerprint with sub-diffraction-limit spatial resolution. This application of TERS has thus far been limited, due to difficulties in generating high field enhancements while maintaining biocompatibility. The high sensitivity achievable through TERS arises from the excitation of a localized surface plasmon resonance in a noble metal atomic force microscope (AFM) tip, which in combination with a metallic surface can produce huge enhancements in the local optical field. However, metals have poor biocompatibility, potentially introducing difficulties in characterizing native structure and conformation in biomolecules, whereas biocompatible surfaces have weak optical field enhancements. Herein, a novel, biocompatible, highly enhancing surface is designed and fabricated based on few-monolayer mica flakes, mechanically exfoliated on a metal surface. These surfaces allow the formation of coupled plasmon enhancements for TERS imaging, while maintaining the biocompatibility and atomic flatness of the mica surface for high resolution AFM. The capability of these substrates for TERS is confirmed numerically and experimentally. We demonstrate up to five orders of magnitude improvement in TERS signals over conventional mica surfaces, expanding the sensitivity of TERS to a wide range of non-resonant biomolecules with weak Raman cross-sections. The increase in sensitivity obtained through this approach also enables the collection of nanoscale spectra with short integration times, improving hyperspectral mapping for these applications. These mica/metal surfaces therefore have the potential to revolutionize spectromicroscopy of complex, heterogeneous biological systems such as DNA and protein complexes.


Asunto(s)
Silicatos de Aluminio/química , Materiales Biocompatibles/química , Oro/química , Microscopía de Fuerza Atómica/instrumentación , ADN/análisis , Microscopía de Fuerza Atómica/métodos , Espectrometría Raman/métodos , Resonancia por Plasmón de Superficie/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA