Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408233

RESUMEN

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Compuestos de Amonio Cuaternario , Animales , Humanos , Autofagia/fisiología , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidad Neuronal , Proteínas Ubiquitinadas/metabolismo
2.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36264221

RESUMEN

The evolutionarily conserved Glycogen Synthase Kinase 3ß (GSK3ß), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3ß regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3ß homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis. Sgg is necessary and sufficient to promote microtubule depolymerization, turnover and disassembly in the dendrites. Although Sgg is not required for the minus-end-out microtubule orientation in dendrites, hyperactivated Sgg can disturb the dendritic microtubule orientation. Moreover, our pharmacological and genetic data suggest that Sgg is required to promote dendrite pruning at least partly via microtubule disassembly. We show that Sgg and Par-1 kinases act synergistically to promote microtubule disassembly and dendrite pruning. Thus, Sgg and Par-1 might converge on and phosphorylate a common downstream microtubule-associated protein(s) to disassemble microtubules and thereby facilitate dendrite pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Dendritas/genética , Células Receptoras Sensoriales , Microtúbulos , Plasticidad Neuronal/genética , Drosophila melanogaster/genética
3.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35735111

RESUMEN

During Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear. Here, we demonstrate that the metabolic regulator AMP-activated protein kinase (AMPK) plays a cell-autonomous role in dendrite pruning. Importantly, AMPK is required for Mical and Headcase expression and for activation of the Nrf2-Keap1 pathway. We reveal that AMPK promotes the Nrf2-Keap1 pathway and dendrite pruning partly via inhibition of the insulin pathway. Moreover, the AMPK-insulin pathway is required for ecdysone signalling to activate the Nrf2-Keap1 pathway during dendrite pruning. Overall, this study reveals an important mechanism whereby ecdysone signalling activates the Nrf2-Keap1 pathway via the AMPK-insulin pathway to promote dendrite pruning, and further suggests that during the nonfeeding prepupal stage metabolic alterations lead to activation of the Nrf2-Keap1 pathway and dendrite pruning.


Asunto(s)
Proteínas de Drosophila , Insulinas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insulinas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Plasticidad Neuronal
4.
EMBO J ; 39(10): e103549, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32267553

RESUMEN

Drosophila class IV ddaC neurons selectively prune all larval dendrites to refine the nervous system during metamorphosis. During dendrite pruning, severing of proximal dendrites is preceded by local microtubule (MT) disassembly. Here, we identify an unexpected role of Mini spindles (Msps), a conserved MT polymerase, in governing dendrite pruning. Msps associates with another MT-associated protein TACC, and both stabilize each other in ddaC neurons. Moreover, Msps and TACC are required to orient minus-end-out MTs in dendrites. We further show that the functions of msps in dendritic MT orientation and dendrite pruning are antagonized by the kinesin-13 MT depolymerase Klp10A. Excessive MT depolymerization, which is induced by pharmacological treatment and katanin overexpression, also perturbs dendritic MT orientation and dendrite pruning, phenocopying msps mutants. Thus, we demonstrate that the MT polymerase Msps is required to form dendritic minus-end-out MTs and thereby promotes dendrite pruning in Drosophila sensory neurons.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Katanina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mutación , Plasticidad Neuronal
5.
BMC Biol ; 21(1): 33, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793038

RESUMEN

BACKGROUND: Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning. However, how downstream components of ecdysone signalling are induced remains not entirely understood. RESULTS: Here, we identify that Scm, a component of Polycomb group (PcG) complexes, is required for dendrite pruning of ddaC neurons. We show that two PcG complexes, PRC1 and PRC2, are important for dendrite pruning. Interestingly, depletion of PRC1 strongly enhances ectopic expression of Abdominal B (Abd-B) and Sex combs reduced, whereas loss of PRC2 causes mild upregulation of Ultrabithorax and Abdominal A in ddaC neurons. Among these Hox genes, overexpression of Abd-B causes the most severe pruning defects, suggesting its dominant effect. Knockdown of the core PRC1 component Polyhomeotic (Ph) or Abd-B overexpression selectively downregulates Mical expression, thereby inhibiting ecdysone signalling. Finally, Ph is also required for axon pruning and Abd-B silencing in MB γ neurons, indicating a conserved function of PRC1 in two types of pruning. CONCLUSIONS: This study demonstrates important roles of PcG and Hox genes in regulating ecdysone signalling and neuronal pruning in Drosophila. Moreover, our findings suggest a non-canonical and PRC2-independent role of PRC1 in Hox gene silencing during neuronal pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas del Grupo Polycomb , Animales , Axones/metabolismo , Dendritas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Plasticidad Neuronal , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
6.
Development ; 147(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32928906

RESUMEN

Neuronal pruning is essential for proper wiring of the nervous systems in invertebrates and vertebrates. Drosophila ddaC sensory neurons selectively prune their larval dendrites to sculpt the nervous system during early metamorphosis. However, the molecular mechanisms underlying ddaC dendrite pruning remain elusive. Here, we identify an important and cell-autonomous role of the membrane protein Raw in dendrite pruning of ddaC neurons. Raw appears to regulate dendrite pruning via a novel mechanism, which is independent of JNK signaling. Importantly, we show that Raw promotes endocytosis and downregulation of the conserved L1-type cell-adhesion molecule Neuroglian (Nrg) prior to dendrite pruning. Moreover, Raw is required to modulate the secretory pathway by regulating the integrity of secretory organelles and efficient protein secretion. Mechanistically, Raw facilitates Nrg downregulation and dendrite pruning in part through regulation of the secretory pathway. Thus, this study reveals a JNK-independent role of Raw in regulating the secretory pathway and thereby promoting dendrite pruning.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Endocitosis/genética , Endocitosis/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Vías Secretoras/genética , Vías Secretoras/fisiología
7.
EMBO Rep ; 22(10): e52679, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34338441

RESUMEN

It has long been thought that microtubule disassembly, one of the earliest cellular events, contributes to neuronal pruning and neurodegeneration in development and disease. However, how microtubule disassembly drives neuronal pruning remains poorly understood. Here, we conduct a systematic investigation of various microtubule-destabilizing factors and identify exchange factor for Arf6 (Efa6) and Stathmin (Stai) as new regulators of dendrite pruning in ddaC sensory neurons during Drosophila metamorphosis. We show that Efa6 is both necessary and sufficient to regulate dendrite pruning. Interestingly, Efa6 and Stai facilitate microtubule turnover and disassembly prior to dendrite pruning without compromising the minus-end-out microtubule orientation in dendrites. Moreover, our pharmacological and genetic manipulations strongly support a key role of microtubule disassembly in promoting dendrite pruning. Thus, this systematic study highlights the importance of two selective microtubule destabilizers in dendrite pruning and substantiates a causal link between microtubule disassembly and neuronal pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Dendritas , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Microtúbulos , Plasticidad Neuronal
8.
Proc Natl Acad Sci U S A ; 117(17): 9292-9301, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32277029

RESUMEN

In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tamaño Corporal/fisiología , Proteína Fosfatasa 2/metabolismo , Animales , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Ecdisterona/metabolismo , Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Insectos/crecimiento & desarrollo , Insectos/metabolismo , Insulina/metabolismo , Larva/crecimiento & desarrollo , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Somatomedinas/metabolismo
9.
BMC Surg ; 23(1): 313, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838733

RESUMEN

BACKGROUND: Raynaud's syndrome (RS), also referred to as Raynaud's phenomenon, is a vasospastic disorder causing episodic color changes in extremities upon exposure to cold or stress. These manifestations, either primary Raynaud's phenomenon (PRP) or associated with connective tissue diseases like systemic sclerosis (SSc) as secondary Raynaud's phenomenon (SRP), affect the quality of life. Current treatments range from calcium channel blockers to innovative surgical interventions, with evolving efficacy and safety profiles. METHODS: In this retrospective study, patients diagnosed with RS were selected based on complete medical records, ensuring homogeneity between groups. Surgeries involved microscopic excision of sympathetic nerve fibers and stripping of the digital artery's adventitia. Postoperative care included antibiotics, analgesia, oral nifedipine, and heat therapies. Evaluation metrics such as the VAS pain score and RCS score were collected bi-weekly. Data analysis was conducted using SPSS 26.0, with significance set at p < 0.05. RESULTS: In total, 15 patients formed the experimental group, with five presenting fingertip soft tissue necrosis and ten showing RS symptoms. Comparative analysis of demographic data between experimental and control groups, both containing 15 participants, demonstrated no significant age and gender difference. However, the "Mean Duration of RP attack" in the experimental group was notably shorter (9.47 min ± 0.31) than the control group (19.33 min ± 1.79). The RS Severity Score also indicated milder severity for the experimental cohort (score: 8.55) compared to the control (score: 11.23). Postoperative assessments at 2, 4, and 6 weeks revealed improved VAS pain scores, RCS scores, and other measures for the experimental group, showing significant differences (p < 0.05). One distinctive case showcased a variation in the common digital nerve and artery course in an RS patient. CONCLUSION: Our retrospective analysis on RS patients indicates that microsurgical techniques are safe and effective in the short term. As surgical practices lean towards minimally invasive methods, our data supports this shift. However, extensive, prospective studies are essential for conclusive insights.


Asunto(s)
Calidad de Vida , Enfermedad de Raynaud , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Enfermedad de Raynaud/cirugía , Enfermedad de Raynaud/complicaciones , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Dolor/complicaciones
10.
PLoS Biol ; 17(6): e3000276, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170139

RESUMEN

The ability of neural stem cells (NSCs) to transit between quiescence and proliferation is crucial for brain development and homeostasis. Drosophila Hippo pathway maintains NSC quiescence, but its regulation during brain development remains unknown. Here, we show that CRL4Mahj, an evolutionarily conserved E3 ubiquitin ligase, is essential for NSC reactivation (exit from quiescence). We demonstrate that damaged DNA-binding protein 1 (DDB1) and Cullin4, two core components of Cullin4-RING ligase (CRL4), are intrinsically required for NSC reactivation. We have identified a substrate receptor of CRL4, Mahjong (Mahj), which is necessary and sufficient for NSC reactivation. Moreover, we show that CRL4Mahj forms a protein complex with Warts (Wts/large tumor suppressor [Lats]), a kinase of the Hippo signaling pathway, and Mahj promotes the ubiquitination of Wts. Our genetic analyses further support the conclusion that CRL4Mahj triggers NSC reactivation by inhibition of Wts. Given that Cullin4B mutations cause mental retardation and cerebral malformation, similar regulatory mechanisms may be applied to the human brain.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Proteínas Portadoras/fisiología , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Humanos , Unión Proteica/fisiología , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
11.
EMBO Rep ; 21(5): e48843, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32187821

RESUMEN

Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Dendritas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas , Microtúbulos , Plasticidad Neuronal , Proteína Fosfatasa 2/genética
12.
Development ; 145(12)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29769219

RESUMEN

Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila, ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, the important role of endoplasmic reticulum (ER)-to-Golgi transport in dendrite pruning remains unknown. Here, in a clonal screen, we have identified Yif1, an uncharacterized Drosophila homolog of Yif1p that is known to be a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identify that the Yif1-binding partner Yip1 is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases, Rab1 and Sar1, which are known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of the cell-adhesion molecule Neuroglian and thereby dendrite pruning.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Metamorfosis Biológica/fisiología , Plasticidad Neuronal/genética , Células Receptoras Sensoriales/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endocitosis/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/genética , Plasticidad Neuronal/fisiología , Células Receptoras Sensoriales/citología , Proteínas de Unión al GTP rab/genética
13.
PLoS Biol ; 16(8): e2004506, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30142146

RESUMEN

Refinement of the nervous system depends on selective removal of excessive axons/dendrites, a process known as pruning. Drosophila ddaC sensory neurons prune their larval dendrites via endo-lysosomal degradation of the L1-type cell adhesion molecule (L1-CAM), Neuroglian (Nrg). Here, we have identified a novel gene, pruning defect 1 (prd1), which governs dendrite pruning of ddaC neurons. We show that Prd1 colocalizes with the clathrin adaptor protein α-Adaptin (α-Ada) and the kinesin-3 immaculate connections (Imac)/Uncoordinated-104 (Unc-104) in dendrites. Moreover, Prd1 physically associates with α-Ada and Imac, which are both critical for dendrite pruning. Prd1, α-Ada, and Imac promote dendrite pruning via the regulation of endo-lysosomal degradation of Nrg. Importantly, genetic interactions among prd1, α-adaptin, and imac indicate that they act in the same pathway to promote dendrite pruning. Our findings indicate that Prd1, α-Ada, and Imac act together to regulate discrete distribution of α-Ada/clathrin puncta, facilitate endo-lysosomal degradation, and thereby promote dendrite pruning in sensory neurons.


Asunto(s)
Subunidades alfa de Complejo de Proteína Adaptadora/genética , Moléculas de Adhesión Celular Neuronal/genética , Dendritas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Plasticidad Neuronal/genética , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Cinesinas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Metamorfosis Biológica/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Unión Proteica , Proteolisis , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
14.
Development ; 144(10): 1851-1862, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28420712

RESUMEN

Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg).


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Drosophila , Factores de Intercambio de Guanina Nucleótido/fisiología , Plasticidad Neuronal/genética , Células Receptoras Sensoriales/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Metamorfosis Biológica/fisiología , Vías Secretoras/genética
16.
J Biol Chem ; 290(41): 24961-74, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26306039

RESUMEN

Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Línea Celular , Dinaminas/química , Dinaminas/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Fosforilación , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/genética , Serina/metabolismo
17.
Development ; 140(20): 4246-55, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24026125

RESUMEN

Gastrulation of Drosophila melanogaster proceeds through sequential cell movements: ventral mesodermal (VM) cells are induced by secreted Fog protein to constrict their apical surfaces to form the ventral furrow, and subsequently lateral mesodermal (LM) cells involute toward the furrow. How these cell movements are organized remains elusive. Here, we observed that LM cells extended apical protrusions and then underwent accelerated involution movement, confirming that VM and LM cells display distinct cell morphologies and movements. In a mutant for the GPCR kinase Gprk2, apical constriction was expanded to all mesodermal cells and the involution movement was abolished. In addition, the mesodermal cells halted apical constriction prematurely in accordance with the aberrant accumulation of Myosin II. Epistasis analyses revealed that the Gprk2 mutant phenotypes were dependent on the fog gene. Overexpression of Gprk2 suppressed the effects of excess Cta, a downstream component of Fog signaling. Based on these findings, we propose that Gprk2 attenuates and tunes Fog-Cta signaling to prevent apical constriction in LM cells and to support appropriate apical constriction in VM cells. Thus, the two distinct cell movements in mesoderm invagination are not predetermined, but rather are organized by the adjustment of cell signaling.


Asunto(s)
Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Gastrulación , Animales , ATPasas Transportadoras de Calcio/metabolismo , Comunicación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/metabolismo , Fenotipo , Transducción de Señal
18.
PLoS Biol ; 11(9): e1001657, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068890

RESUMEN

Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Sistema Nervioso/embriología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/genética , Proteínas de Unión al ADN/genética , Dendritas/metabolismo , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica , Cuerpos Pedunculados/inervación , Neuronas/metabolismo , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción SOXB2/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
EMBO Rep ; 15(2): 165-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413555

RESUMEN

Drosophila larval brain neuroblasts divide asymmetrically to balance between self-renewal and differentiation. Here, we demonstrate that the SCF(Slimb) E3 ubiquitin ligase complex, which is composed of Cul1, SkpA, Roc1a and the F-box protein Supernumerary limbs (Slimb), inhibits ectopic neuroblast formation and regulates asymmetric division of neuroblasts. Hyperactivation of Akt leads to similar neuroblast overgrowth and defects in asymmetric division. Slimb associates with Akt in a protein complex, and SCF(S)(limb) acts through SAK and Akt to inhibit neuroblast overgrowth. Moreover, Beta-transducin repeat containing, the human ortholog of Slimb, is frequently deleted in highly aggressive gliomas, suggesting a conserved tumor suppressor-like function.


Asunto(s)
División Celular Asimétrica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Células-Madre Neurales/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducina/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Ann Ital Chir ; 95(1): 78-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469615

RESUMEN

BACKGROUND: To compare the clinical effects between wrist arthroscopy-assisted open reduction plus internal fixation, using the triangular fibrocartilage complex (TFCC) as an example, and simple open reduction plus internal fixation in the treatment of distal radius fractures (DRFs). The study aims to assess the efficacy of arthroscopic-assisted open reduction and internal fixation in treating distal radius fractures. METHODS: The study utilized a retrospective cohort research approach, involving 60 patients treated at Binzhou Medical University Hospital between August 2021 and October 2022. These patients met the specified criteria and underwent two distinct surgical procedures for DRFs. Prior to surgery, thorough communication was established with the patients to elucidate the advantages, risks, and associated costs of wrist arthroscopy, and informed consent was obtained. Subsequent to the surgeries, postoperative follow-up was conducted to evaluate the variances between the two treatment modalities. Postoperative analysis and assessment encompassed the patients' Visual Analogue Scale (VAS) scores, Cooney wrist scores, grip strength of the affected limb (in comparison with the healthy side), wrist range of motion, and the frequency of intraoperative fluoroscopy usage. RESULTS: No surgical complications were observed among all patients. They were followed up for an average duration of (12.1 ± 1.3) months postoperatively, during which all fractures healed successfully. Within the treatment group, arthroscopy detected 14 cases of TFCC tears during the operation, all of which were repaired under a microscope. Conversely, physical examination identified three cases of TFCC injury in the control group, which were treated via incision and suture. At the 3-month postoperative mark, the treatment group exhibited significantly superior comprehensive scores for wrist pain, grip strength, and wrist range of motion compared to the control group (p < 0.05). Cooney's comprehensive wrist joint scoring yielded the following results: treatment group - excellent in 21 cases, good in five cases, and moderate in four cases; control group - excellent in 16 cases, good in nine cases, and moderate in five cases. CONCLUSION: Wrist arthroscopy-assisted surgery facilitates precise reduction of the articular surface and alleviation of intraarticular congestion. Moreover, it enables evaluation and repair of concurrent intra-articular injuries such as TFCC tears and other tissue injuries, thereby reducing the likelihood of chronic wrist pain. Consequently, this technique should be deemed valuable in clinical practice owing to its outstanding clinical efficacy.


Asunto(s)
Fracturas del Radio , Fibrocartílago Triangular , Fracturas de la Muñeca , Traumatismos de la Muñeca , Humanos , Fibrocartílago Triangular/cirugía , Fibrocartílago Triangular/lesiones , Muñeca , Artroscopía/métodos , Estudios Retrospectivos , Traumatismos de la Muñeca/cirugía , Fracturas del Radio/cirugía , Articulación de la Muñeca/cirugía , Resultado del Tratamiento , Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA