Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 148, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664691

RESUMEN

BACKGROUND: The purinergic P2X7 receptor (P2X7R) plays an important role in the crosstalk between pancreatic stellate cells (PSCs) and cancer cells, thus promoting progression of pancreatic ductal adenocarcinoma (PDAC). Single nucleotide polymorphisms (SNPs) in the P2X7R have been reported for several cancers, but have not been explored in PDAC. MATERIALS AND METHODS: Blood samples from PDAC patients and controls were genotyped for 11 non-synonymous SNPs in P2X7R and a risk analysis was performed. Relevant P2X7R-SNP GFP variants were expressed in PSCs and cancer cells and their function was assayed in the following tests. Responses in Ca2+ were studied with Fura-2 and dye uptake with YO-PRO-1. Cell migration was monitored by fluorescence microscopy. Released cytokines were measured with MSD assay. RESULTS: Risk analysis showed that two SNPs 474G>A and 853G>A (rs28360447, rs7958316), that lead to the Gly150Arg and Arg276His variants, had a significant but opposite risk association with PDAC development, protecting against and predisposing to the disease, respectively. In vitro experiments performed on cancer cells and PSCs expressing the Gly150Arg variant showed reduced intracellular Ca2+ response, fluorescent dye uptake, and cell migration, while the Arg276His variant reduced dye uptake but displayed WT-like Ca2+ responses. As predicted, P2X7R was involved in cytokine release (IL-6, IL-1ß, IL-8, TNF-α), but the P2X7R inhibitors displayed varied effects. CONCLUSION: In conclusion, we provide evidence for the P2X7R SNPs association with PDAC and propose that they could be considered as potential biomarkers.

2.
Appl Microbiol Biotechnol ; 108(1): 304, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643456

RESUMEN

Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified.  • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.


Asunto(s)
Actinobacteria , Actinomycetales , Ingeniería Metabólica , Antibacterianos , Tobramicina
3.
Nucleic Acids Res ; 50(7): 3867-3891, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357488

RESUMEN

Human papillomavirus type 16 (HPV16) E2 is an essential HPV16 protein. We have investigated how HPV16 E2 expression is regulated and have identifed a splicing enhancer that is required for production of HPV16 E2 mRNAs. This uridine-less splicing enhancer sequence (ACGAGGACGAGGACAAGGA) contains 84% adenosine and guanosine and 16% cytosine and consists of three 'AC(A/G)AGG'-repeats. Mutational inactivation of the splicing enhancer reduced splicing to E2-mRNA specific splice site SA2709 and resulted in increased levels of unspliced E1-encoding mRNAs. The splicing enhancer sequence interacted with cellular RNA binding protein hnRNP G that promoted splicing to SA2709 and enhanced E2 mRNA production. The splicing-enhancing function of hnRNP G mapped to amino acids 236-286 of hnRNP G that were also shown to interact with splicing factor U2AF65. The interactions between hnRNP G and HPV16 E2 mRNAs and U2AF65 increased in response to keratinocyte differentiation as well as by the induction of the DNA damage response (DDR). The DDR reduced sumoylation of hnRNP G and pharmacological inhibition of sumoylation enhanced HPV16 E2 mRNA splicing and interactions between hnRNP G and E2 mRNAs and U2AF65. Intriguingly, hnRNP G also promoted intron retention of the HPV16 E6 coding region thereby inhibiting production of spliced E7 oncogene mRNAs.


Asunto(s)
Proteínas de Unión al ADN/genética , Ribonucleoproteínas Nucleares Heterogéneas , Papillomavirus Humano 16 , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogénicas Virales/metabolismo , Oncogenes , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
J Environ Manage ; 351: 119600, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042077

RESUMEN

Body size is closely related to the trophic level and abundance of soil fauna, particularly nematodes. Therefore, size-based analyses are increasingly prominent in unveiling soil food web structure and its responses to anthropogenic disturbances, such as livestock grazing. Yet, little is known about the effects of different livestock on the body size structure of soil nematodes, especially in grasslands characterized by local habitat heterogeneity. A four-year field grazing experiment from 2017 to 2020 was conducted in a meadow steppe characterized by typical mosaics of degraded hypersaline patches and undegraded hyposaline patches to assess the impacts of cattle and sheep grazing on the body size structure of soil nematodes within and across trophic groups. Without grazing, the hypersaline patches harbored higher abundance of large-bodied nematodes in the community compared to the hyposaline patches. Livestock grazing decreased large-bodied nematodes within and across trophic groups mainly by reducing soil microbial biomass in the hypersaline patches, with sheep grazing resulting in more substantial reductions compared to cattle grazing. The reduction in large-bodied nematode individuals correspondingly resulted in decreases in nematode community-weighted mean (CWM) body size, nematode biomass, and size spectra slopes. However, both cattle and sheep grazing had minimal impacts on the CWM body size and size spectra of total nematodes in the hyposaline patches. Our findings suggest that livestock grazing, especially sheep grazing, has the potential to simplify soil food webs by reducing large-bodied nematodes in degraded habitats, which may aggravate soil degradation by weakening the bioturbation activities of soil fauna. In light of the widespread land use of grasslands by herbivores of various species and the ongoing global grassland degradation of mosaic patches, the recognition of the trends revealed by our findings is critical for developing appropriate strategies for grassland grazing management.


Asunto(s)
Pradera , Nematodos , Animales , Bovinos , Ovinos , Suelo , Ganado , Ecosistema , Tamaño Corporal
5.
Calcif Tissue Int ; 113(4): 393-402, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37656219

RESUMEN

PURPOSE: Bone health and body composition share several common mechanisms like oxidative stress and inflammation. Anthocyanins have antioxidant and anti-inflammatory properties. We have reported that anthocyanins are associated with better body composition in children, but the associations with bone health have not been elucidated. We aimed to explore the association of anthocyanins with bone mineral content (BMC) and bone mineral density (BMD) at multiple sites in children. METHODS: In this cross-sectional study, 452 Chinese children aged 6-9 years were recruited. A validated 79-item food frequency questionnaire was used to collect dietary information. BMC and BMD at multiple sites (whole body; whole body excluding head, WBEH; limbs; arms; legs) were measured by dual-energy X-ray. RESULTS: Higher dietary intake of total anthocyanidins (per one standard deviation increase) was associated with a 1.28-13.6 g (1.31-1.60%, compared to median) higher BMC at all sites and a 3.61-6.96 mg (0.65-0.90%) higher BMD at the whole body, WBEH, and arm sites after controlling for a number of possible covariates. The results were similar and more pronounced for cyanidin, but not for delphinidin and peonidin. Higher dietary intake of cyanidin (per one standard deviation increase) was associated with a 1.33-15.4 g (1.48-1.68%) higher BMC at all sites and a 4.15-7.77 mg (0.66-1.00%) higher BMD at all sites except the legs. No statistically significant associations with BMC or BMD were found for dietary intake of delphinidin and peonidin. CONCLUSIONS: Higher dietary intake of total anthocyanidins and cyanidins were associated with higher BMC and BMD in Chinese children.


Asunto(s)
Antocianinas , Densidad Ósea , Humanos , Niño , Estudios Transversales , Antioxidantes , Ingestión de Alimentos
6.
Ecol Appl ; 33(2): e2803, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36560874

RESUMEN

Grassland degradation caused by increases in livestock grazing threatens a variety of ecosystem services. Understanding changes in plant community assembly during the process of grassland degradation in the presence of grazing is important to help restore degraded grasslands worldwide but has received little attention thus far. The grassland degradation process is typified by heterogeneous degradation, that is, gradual formation of degraded patches (hereafter "patchy degradation"). Here, we experimentally examined the effects of herbivore grazing and patchy degradation on plant community assembly using nine pairs of non-degraded (intact) and patch-degraded (fragmented) grasslands subject to grazing by different-sized herbivores (i.e., NG, no grazing; SG, sheep grazing; CG, cattle grazing) over 4 years. Using a null-model approach, we estimated the relative magnitude of deterministic processes of community assembly by comparing the observed and expected ß-diversity. We found that in the absence of herbivore grazing, deterministic processes played a greater role in community assembly, regardless of whether patchy degradation had occurred. However, the deterministic processes resulted in plant communities being more spatially similar in non-degraded grasslands while being more dissimilar in patchy degraded grasslands. Compared with non-degraded grasslands, species with strong competitive abilities (i.e., Leymus chinensis) were less dominant in patchy degraded grasslands, indicating relaxed competition and a reduced role of species interactions over plant communities. Instead, patchy degradation added the role of environmental variables over plant communities. SG consistently promoted more stochastic plant community assembly in both non-degraded and patch-degraded grasslands, while CG promoted more stochastic plant community assembly only in the non-degraded state, having no effect in the patch-degraded state. Our study offers important insights into changes in plant community assembly during ongoing patch-degradation of grasslands, indicating the role of increased environmental filtering of soil and reduced species interactions in driving plant community dynamics with increasing grassland patchy degradation. We also uncovered an herbivore species-specific effect on plant community assembly during the process of grassland degradation, which will better inform and improve future grassland restoration planning efforts.


Asunto(s)
Ecosistema , Herbivoria , Animales , Bovinos , Ovinos , Pradera , Biodiversidad , Plantas , Suelo
7.
Environ Sci Technol ; 57(8): 3095-3103, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36799869

RESUMEN

Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.


Asunto(s)
Hidrocarburos Clorados , Parafina , Parafina/análisis , Hidrocarburos Clorados/análisis , Monitoreo del Ambiente , Plastificantes , Fraccionamiento Químico , China
8.
Environ Sci Technol ; 57(14): 5580-5591, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36976867

RESUMEN

Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 µg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 µg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.


Asunto(s)
Contaminación del Aire Interior , Hidrocarburos Clorados , Cloruro de Vinilo , Exposición por Inhalación/análisis , Parafina/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Clorados/análisis , Polvo/análisis , China
9.
Appl Microbiol Biotechnol ; 107(5-6): 1663-1672, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36719434

RESUMEN

O-Methylation catalyzed by O-methyltransferases (OMTs) is an important modification of flavonoids for improving the transport efficiency across membranes and metabolic stability in mammalian cells. Chrysoeriol, also known as 3'-O-methylated luteolin, is a methylated flavonoid compound with health-promoting activities. The generation of chrysoeriol from luteolin can be catalyzed by a rice-derived 3'-OMT named ROMT-9, which has a high regiospecificity and activity toward flavonoids in vitro. Herein, we explored the potential of ROMT-9 for in vivo biosynthesis of chrysoeriol in Escherichia coli and adopted semi-rational enzyme engineering guided by homology modeling and molecular docking to improve the bio-production. Two positive variants including L34Q and W284A were obtained which promoted chrysoeriol formation to more than 85 mg/L from 200 mg/L of luteolin in 24 h compared with a titer of 55 mg/L for the strain expressing the native enzyme. Further biochemical analysis confirmed that such improvement in production stemmed from a higher enzyme expression level for the L34Q variant and higher efficiency in substrate binding and catalysis for the W284A variant. This study provides some insights into the engineering of other flavonoid OMTs and will facilitate high-level biosynthesis of methylated flavonoids in engineered microorganisms. KEY POINTS: • Biosynthesis of chrysoeriol from luteolin in E. coli using ROMT-9 • Engineering of ROMT-9 for better bio-production • ROMT-9 variants promote production via better expression or better catalysis.


Asunto(s)
Flavonoides , Metiltransferasas , Animales , Flavonoides/metabolismo , Metiltransferasas/metabolismo , Escherichia coli/metabolismo , Luteolina/metabolismo , Simulación del Acoplamiento Molecular , Mamíferos/metabolismo
10.
Appl Microbiol Biotechnol ; 107(21): 6507-6525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658164

RESUMEN

Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.

11.
BMC Psychiatry ; 23(1): 628, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641013

RESUMEN

BACKGROUND: Patients with remitted major depressive disorder (rMDD) show abnormal functional connectivity of the central executive network (CEN), salience networks (SN) and default mode network (DMN). It is unclear how these change during remission, or whether changes are related to function. METHODS: Three spatial networks in 17 patients with rMDD were compared between baseline and the six-month follow-up, and to 22 healthy controls. Correlations between these changes and psychosocial functioning were also assessed. RESULTS: In the CEN, patients at baseline had abnormal functional connectivity in the right anterior cingulate, right dorsolateral prefrontal cortex (DLPFC) and inferior parietal lobule (IPL) compare with HCs. There were functional connection differences in the right DLPFC and left IPL at baseline during follow-up. Abnormal connectivity in the right DLPFC and medial prefrontal cortex (mPFC) were found at follow-up. In the SN, patients at baseline had abnormal functional connectivity in the insula, left anterior cingulate, left IPL, and right precuneus; compared with baseline, patients had higher connectivity in the right DLPFC at follow-up. In the DMN, patients at baseline had abnormal functional connectivity in the right mPFC. Resting-state functional connectivity of the IPL and DLPFC in the CEN correlated with psychosocial functioning. CONCLUSIONS: At six-month follow-up, the CEN still showed abnormal functional connectivity in those with rMDD, while anomalies in the SN and DMN has disappeared. Resting-state functional connectivity of the CEN during early rMDD is associated with psychosocial function. CLINICAL TRIALS REGISTRATION: Pharmacotherapy and Psychotherapy for MDD after Remission on Psychology and Neuroimaging. https://www. CLINICALTRIALS: gov/ , registration number: NCT01831440 (15/4/2013).


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Estudios de Seguimiento , Giro del Cíngulo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
12.
Cell Mol Life Sci ; 79(8): 436, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864178

RESUMEN

OBJECTIVE: The molecular heterogeneity of prostate cancer (PCa) gives rise to distinct tumor subclasses based on epigenetic modification and gene expression signatures. Identification of clinically actionable molecular subtypes of PCa is key to improving patient outcome, and the balance between specific pathways may influence PCa outcome. It is also urgent to identify progression-related markers through cytosine-guanine (CpG) methylation in predicting metastasis for patients with PCa. METHODS: We performed bioinformatics analysis of transcriptomic, and clinical data in an integrated cohort of 551 prostate samples. The datasets included retrospective The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. RESULTS: We found that PCa progression is more likely to occur after the third year through conditional survival (CS) analysis, and prostate-specific antigen (PSA) was a better predictor of Progression-free survival (PFS) than Gleason score (GS). Our study first demonstrated that PCa tumors have distinct expression profiles based on the expression of genes involved in androgen receptor (AR) and PI3K-AKT, which influence disease outcome. Our results also indicated that there are multiple phenotypes relevant to the AR-PI3K axis in PCa, where tumors with mixed phenotype may be more aggressive or have worse outcome than quiescent phenotype. In terms of epigenetics, we obtained CpG sites and their corresponding genes which have a good predictive value of PFS. However, various evidences showed that the predictive value of CpGs corresponding genes was much lower than GpG sites in Overall survival (OS) and PFS. CONCLUSIONS: PCa classification specific to AR and PI3K pathways provides novel biological insight into previously established PCa subtypes and may help develop personalized therapies. Our results support the potential clinical utility of DNA methylation signatures to distinguish tumor metastasis and to predict prognosis and outcomes.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Metilación de ADN/genética , Expresión Génica , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Estudios Retrospectivos
13.
Bioelectromagnetics ; 44(5-6): 107-118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186397

RESUMEN

Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.


Asunto(s)
Macrófagos , Receptor de Manosa
14.
Eur Arch Otorhinolaryngol ; 280(8): 3721-3729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36917251

RESUMEN

PURPOSE: To evaluate the putative association between subjective symptoms and eosinophilic inflammation in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS: A total of 102 patients with CRSwNP who underwent endoscopic sinus surgery were prospectively enrolled. The Sinonasal Outcomes Test-22 scores (SNOT-22), EuroQol 5-dimensional Questionnaire scores (ED-5D), and Lund-Mackay scores by computed tomography (CT) were obtained. Patients were grouped as eosinophilic CRSwNP (eCRSwNP) and non-eosinophilic CRSwNP (neCRSwNP). ECRSwNP was defined if tissue eosinophils of nasal polyps were greater than or equal to 8/HPF according to positive major basic protein (MBP) staining, and neCRSwNP otherwise. RESULTS: Thirty neCRSwNP and 72 eCRSwNP patients were included. ECRSwNP patients had higher incidences of asthma (p = 0.001), allergic rhinitis (p = 0.001), and ethmoid-to-maxillary opacification ratio on CT scans (p < 0.001), whereas the proportion of purulent discharge (p < 0.001) and maxillary sinus score (p = 0.002) was higher in the neCRSwNP patients. There were no significant differences between patients on the mains of the EQ-5D health utility values and total SNOT-22 score. However, eCRSwNP patients had higher SNOT-22 scores of sneezing (p = 0.006), runny nose (p < 0.001), and ear/facial domain (p = 0.012), and lower scores of thick nasal discharge (p = 0.015) and blockage (p = 0.042). Sneezing, thick nasal discharge, and blockage/congestion of nose were recognized as independent factors of CRSwNP. CONCLUSION: Sneezing was an independent predictor of eCRSwNP, and thick nasal discharge and blockage/congestion of nose were independent predictors of neCRSwNP.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Enfermedad Crónica , Pueblos del Este de Asia , Eosinófilos/metabolismo , Seno Maxilar , Pólipos Nasales/complicaciones , Pólipos Nasales/diagnóstico , Pólipos Nasales/metabolismo , Pólipos Nasales/cirugía , Rinitis/diagnóstico , Rinitis/diagnóstico por imagen , Rinitis/cirugía , Sinusitis/diagnóstico , Sinusitis/diagnóstico por imagen , Sinusitis/cirugía , Estornudo , Endoscopía
15.
Angew Chem Int Ed Engl ; 62(2): e202213855, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36367520

RESUMEN

l-threonine aldolase (LTA) catalyzes C-C bond synthesis with moderate diastereoselectivity. In this study, with LTA from Cellulosilyticum sp (CpLTA) as an object, a mutability landscape was first constructed by performing saturation mutagenesis at substrate access tunnel amino acids. The combinatorial active-site saturation test/iterative saturation mutation (CAST/ISM) strategy was then used to tune diastereoselectivity. As a result, the diastereoselectivity of mutant H305L/Y8H/V143R was improved from 37.2 %syn to 99.4 %syn . Furthermore, the diastereoselectivity of mutant H305Y/Y8I/W307E was inverted to 97.2 %anti . Based on insight provided by molecular dynamics simulations and coevolution analysis, the Prelog rule was employed to illustrate the diastereoselectivity regulation mechanism of LTA, holding that the asymmetric formation of the C-C bond was caused by electrons attacking the carbonyl carbon atom of the substrate aldehyde from the re or si face. The study would be useful to expand LTA applications and guide engineering of other C-C bond-forming enzymes.


Asunto(s)
Aminoácidos , Glicina Hidroximetiltransferasa , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Mutación , Mutagénesis , Aminoácidos/química , Dominio Catalítico , Especificidad por Sustrato
16.
Small ; 18(14): e2107745, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35174962

RESUMEN

An anode electrode concept of thin catalyst-coated liquid/gas diffusion layers (CCLGDLs), by integrating Ir catalysts with Ti thin tunable LGDLs with facile electroplating in proton exchange membrane electrolyzer cells (PEMECs), is proposed. The CCLGDL design with only 0.08 mgIr cm-2 can achieve comparative cell performances to the conventional commercial electrode design, saving ≈97% Ir catalyst and augmenting a catalyst utilization to ≈24 times. CCLGDLs with regulated patterns enable insight into how pattern morphology impacts reaction kinetics and catalyst utilization in PEMECs. A specially designed two-sided transparent reaction-visible cell assists the in situ visualization of the PEM/electrode reaction interface for the first time. Oxygen gas is observed accumulating at the reaction interface, limiting the active area and increasing the cell impedances. It is demonstrated that mass transport in PEMECs can be modified by tuning CCLGDL patterns, thus improving the catalyst activation and utilization. The CCLGDL concept promises a future electrode design strategy with a simplified fabrication process and enhanced catalyst utilization. Furthermore, the CCLGDL concept also shows great potential in being a powerful tool for in situ reaction interface research in PEMECs and other energy conversion devices with solid polymer electrolytes.

17.
Clin Sci (Lond) ; 136(13): 1053-1069, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730575

RESUMEN

Osteoarthritis (OA) is a heterogeneous condition characterized by cartilage degradation, subchondral sclerosis, and osteophyte formation, and accompanied by the generation of pro-inflammatory mediators and degradation of extracellular matrix. The current treatment for early OA is focused on the relief of symptoms, such as pain, but this treatment cannot delay the pathological process. L-Glutamine (L-Gln), which has anti-inflammatory and anti-apoptotic effects, is the most abundant amino acid in human blood. However, its role in OA has not been systematically studied. Therefore, the objective of this work was to explore the therapeutic effect and molecular mechanism of L-Gln on OA. In vitro, we found that L-Gln could up-regulate the expression of the long non-coding RNA NKILA, which is regulated by the transforming growth factor-ß1/SMAD2/3 pathway, and inhibit the activity of nuclear factor-κB, thereby decreasing the expression of nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-13 (MMP-13). This led to a reduction in the generation of nitrous oxide, prostaglandin E-2, tumour necrosis factor-α, and degradation of the extracellular matrix (i.e. aggrecan and collagen II) in rat OA chondrocytes. Moreover, intragastric administration of L-Gln reduced the degradation of cartilage tissue and expression of MMP-13 in a rat OA model. L-Gln also relieved the clinical symptoms in some patients with early knee joint OA. These findings highlight that L-Gln is a potential therapeutic drug to delay the occurrence and development of OA.


Asunto(s)
Glutamina , Osteoartritis de la Rodilla , ARN Largo no Codificante , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Condrocitos/metabolismo , Condrocitos/patología , Glutamina/metabolismo , Glutamina/farmacología , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
18.
Org Biomol Chem ; 20(43): 8506-8514, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36278418

RESUMEN

Homogeneous glycoprotein syntheses have become possible in the last decade due to advances in chemical ligation strategies, particularly Native Chemical Ligation (NCL). For native glycoproteins this still requires laborious and technically challenging syntheses of glycopeptide components, combined with multi-segment ligation reactions. Here we explore new reactions between sugar-linked acyl transfer auxiliaries and peptide thioesters. We show that native glycoproteins are difficult to produce using this approach but various related analogues are accessible. The results show that site-specific neoglycoconjugation is a viable route to simply glycosylated proteins, which may be extended using well-documented enzymatic processes.


Asunto(s)
Glicopéptidos , Péptidos , Glicoproteínas , Glicosilación , Carbohidratos
19.
Nano Lett ; 21(7): 2932-2938, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33759535

RESUMEN

For versatile lead-halide perovskite materials, their trap states, both in the bulk and at the surface, significantly influence optoelectronic behaviors and the performance of the materials and devices. Direct observation of the trap dynamics at the nanoscale is necessary to understand and improve the device design. In this report, we combined the femtosecond pump-probe technique and photoemission electron microscopy (PEEM) to investigate the trap states of an inorganic perovskite CsPbBr3 single-crystal microplate with spatial-temporal-energetic resolving capabilities. Several shallow trap sites were identified within the microplate, while the deep traps were resolved throughout the surface. The results revealed high-defect tolerance to the shallow traps, while the surface dynamics were dominated by the surface deep traps. The ultrafast PEEM disclosed a full landscape of fast electron transfer and accumulation of the surface trap states. These discoveries proved the excellent electronic properties of perovskite materials and the importance of surface optimization.

20.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955961

RESUMEN

The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.


Asunto(s)
Impresión Genómica , ARN Largo no Codificante , Animales , Sitios de Unión , Proteínas de Unión al Calcio/genética , Metilación de ADN , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Embarazo , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA