Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202403695, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38436549

RESUMEN

Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.

2.
Bioprocess Biosyst Eng ; 46(11): 1639-1650, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37733076

RESUMEN

With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 µmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.


Asunto(s)
Reactores Biológicos , Pichia , Proteínas Recombinantes/química , Pichia/genética , Pichia/metabolismo , Fermentación
3.
ACS Appl Mater Interfaces ; 16(32): 42332-42342, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084210

RESUMEN

Lithium metal anode has attracted wide attention due to its ultrahigh theoretical specific capacity, lowest reduction potential, and low density. However, uncontrollable dendritic growth and volume change caused by uneven Li+ deposition still seriously hinder the large-scale commercial application of lithium metal batteries, even causing serious battery explosions and other safety problems. Hence, gold nanoparticles with a gradient distribution anchored on 3D carbon fiber paper (CP) current collectors followed by the encapsulation of polydopamine (PDA) (CP/Au/PDA) are constructed for stable and dendrite-free Li metal anodes for the first time. Significantly, lithiophilic Au nanoparticles showing a gradient distribution in the carbon fiber paper could guide the transfer of Li+ from the outside to the inside of the CP/Au/PDA electrode as well as lower the nucleation overpotential of Li, thereby obtaining the uniform Li deposition. Meanwhile, the PDA layer could in situ be converted to Li-PDA which could serve as an efficient Li+ conductor to further facilitate uniform Li+ transport among the whole CP/Au/PDA electrode. Besides, 3D carbon fiber paper could effectively accommodate the volume change during the plating/stripping process of Li metal. As a result, CP/Au/PDA electrodes deliver a low nucleation overpotential (∼9 mV) and a high Coulombic efficiency (mean value of ∼98.8%) at a current density of 1 mA cm-2 with the capacity of 1 mA h cm-2. Furthermore, Li@CP/Au/PDA electrodes also can demonstrate an ultralow voltage hysteresis (∼20 mV) and a long cycle life (1000 h) in symmetric cells. Finally, with LiFePO4 (LFP) as the cathode, the Li@CP/Au/PDA-LFP full cell delivers a high discharge capacity of 136 mA h g-1 even after 350 cycles at 1C, exhibiting a per cycle loss as low as 0.01%. This gradient lithium ion regulation current collector is of great significance for the development of lithium metal anodes.

4.
Free Radic Biol Med ; 153: 122-131, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32344103

RESUMEN

The microRNA-based mechanisms underlying the antioxidant action(s) of co-existing flavonoids in response to oxidative stress are of high interest. This study aimed to extend the existing knowledge and provide insights into the potential regulatory network in response to oxidative stress and the co-presence of quercetin and catechin antioxidants, via a preclinical approach using H2O2-stimulated HepG2 cells. It was confirmed that BACH1 serves as an essential and direct negative regulator of the Keap1-Nrf2 signaling pathway and the antioxidant synergism between quercetin and catechin. BACH1 promoted reactive oxygen species (ROS) accumulation while inhibiting cell growth, which could be reversed by the synergistic action of let-7a-5p and miR-25-3p in the co-presence of quercetin and catechin. Both let-7a-5p and miR-25-3p could directly regulate the expression and function of BACH1 (e.g. upregulation of the two miRNAs could rescue largely overexpression of BACH1). Although these molecular interactions likely represented only some aspects of the overall regulatory network, this research confirms the feasibility of the combined uses of dietary flavonoids with chemopreventive properties in synergy during multiple-target interactions and multiple-pathway regulation.


Asunto(s)
Catequina , MicroARNs , Antioxidantes/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Catequina/farmacología , Células Hep G2 , Humanos , Peróxido de Hidrógeno , Proteína 1 Asociada A ECH Tipo Kelch , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Quercetina/farmacología
5.
Micromachines (Basel) ; 9(2)2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-30393350

RESUMEN

A three-dimensional topography simulation of deep reactive ion etching (DRIE) is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA