Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FASEB J ; 35(2): e21183, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33184978

RESUMEN

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in adults. The cellular mechanisms of CAVD are still unknown, but accumulating evidence has revealed that osteogenic differentiation of human valve interstitial cells (hVICs) plays an important role in CAVD. Thus, we aimed to investigate the function of estrogen-related receptor α (ERRα) in the osteogenic differentiation of hVICs. We found that the level of ERRα was significantly increased in CAVD samples compared to normal controls. In addition, ERRα was significantly upregulated during hVIC osteogenic differentiation in vitro. Gain- and loss-of-function experiments were performed to identify the function of ERRα in hVIC calcification in vitro. Inhibition of endogenous ERRα attenuated hVIC calcification, whereas overexpression of ERRα in hVICs promoted this process. RNA sequencing results suggested that heme oxygenase-1 (Hmox1) was a downstream target of ERRα, which was further confirmed by western blotting. Additionally, we also found that downregulation of Hmox1 by shHmox1 efficiently reversed the inhibition of calcification induced by ERRα shRNA in hVICs. ChIP-qPCR and luciferase assays indicated that Hmox1 was negatively regulated by ERRα. We found that overexpression of Hmox1 or its substrates significantly inhibited hVIC calcification in vitro. In conclusion, we found that knockdown of ERRα can inhibit hVIC calcification through upregulating Hmox1 and that ERRα and Hmox1 are potential targets for the treatment of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/metabolismo , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Anciano , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Diferenciación Celular/genética , Femenino , Células HEK293 , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Persona de Mediana Edad , Osteogénesis/genética , Transfección , Regulación hacia Arriba/genética , Calcificación Vascular , Receptor Relacionado con Estrógeno ERRalfa
2.
J Mol Cell Cardiol ; 150: 54-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045251

RESUMEN

AIMS: Calcific aortic valve disease (CAVD) is a primary cause of cardiovascular mortality; however, its mechanisms are unknown. Currently, no effective pharmacotherapy is available for CAVD. Aldo-keto reductase family 1 member B (Akr1B1) has been identified as a potential therapeutic target for valve interstitial cell calcification. Herein, we hypothesized that inhibition of Akr1B1 can attenuate aortic valve calcification. METHODS AND RESULTS: Normal and degenerative tricuspid calcific valves from human samples were analyzed by immunoblotting and immunohistochemistry. The results showed significant upregulation of Akr1B1 in CAVD leaflets. Akr1B1 inhibition attenuated calcification of aortic valve interstitial cells in osteogenic medium. In contrast, overexpression of Akr1B1 aggravated calcification in osteogenic medium. Mechanistically, using RNA sequencing (RNAseq), we revealed that Hippo-YAP signaling functions downstream of Akr1B1. Furthermore, we established that the protein level of the Hippo-YAP signaling effector active-YAP had a positive correlation with Akr1B1. Suppression of YAP reversed Akr1B1 overexpression-induced Runx2 upregulation. Moreover, YAP activated the Runx2 promoter through TEAD1 in a manner mediated by ChIP and luciferase reporter systems. Animal experiments showed that the Akr1B1 inhibitor epalrestat attenuated aortic valve calcification induced by a Western diet in LDLR-/- mice. CONCLUSION: This study demonstrates that inhibition of Akr1B1 can attenuate the degree of calcification both in vitro and in vivo. The Akr1B1 inhibitor epalrestat may be a potential treatment option for CAVD.


Asunto(s)
Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas/metabolismo , Estenosis de la Válvula Aórtica/enzimología , Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/enzimología , Válvula Aórtica/patología , Calcinosis/enzimología , Calcinosis/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Animales , Válvula Aórtica/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Lentivirus/metabolismo , Ratones , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
3.
Nucleic Acids Res ; 44(D1): D801-7, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26578584

RESUMEN

The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genoma de los Insectos , Insectos/genética , Animales , Genes de Insecto , Genómica , Insectos/clasificación , Filogenia , Programas Informáticos
4.
Nat Commun ; 15(1): 557, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228638

RESUMEN

Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Ratones , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Osteogénesis , Calcinosis/tratamiento farmacológico , Calcinosis/metabolismo , Células Cultivadas , Fenómenos Magnéticos
5.
Environ Pollut ; 293: 118513, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793913

RESUMEN

Chlorpyrifos (CPF), as an organophosphate insecticide extensively used in the modern agricultural system, has been gradually banned in many countries due to its reported health risks to organisms, including humans. This study used simulated paddy field experiments and carbon-14 tracing to explore the possibility of reducing environmental risks of chlorpyrifos application through appropriate agronomic practice. Results showed 14C-CPF concentration in rice plants planted in the red soil (RS) was significantly higher than that in black soil (BS) and fluvo-aquic soil (FS). The application of biochar and chicken manure in RS reduced 14C-CPF accumulation in rice plants, and the content of 14C-CPF in rice grains decreased by 25% and 50%, respectively. Adding biochar to all three soils reduced the migration of 14C-CPF, especially in FS with the highest risk of 14C-CPF migration. The addition of chicken manure in FS reduced the migration of 14C-CPF and the total residual amount of 14C-CPF in the soil. In addition, chicken manure treatment increased the formation of 14C-bound residues (BRs) in soils and changed the distribution 14C-BRs in humus. The results indicated that the degree of environmental risks associated with the CPF application varies with soil types and could be reduced by introducing suitable exogenous organic matter into different soils, which is of great significance for guiding the scientific application of chlorpyrifos in agronomic practices.


Asunto(s)
Cloropirifos , Oryza , Contaminantes del Suelo , Agricultura , Radioisótopos de Carbono , Humanos , Suelo , Contaminantes del Suelo/análisis
6.
Adv Healthc Mater ; 11(8): e2102059, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969157

RESUMEN

Heart valves have extraordinary fatigue resistance which beat ≈3 billion times in a lifetime. Bioprosthetic heart valves (BHVs) made from fixed heteroplasm that are incrementally used in heart valve replacement fail to sustain the expected durability due to thrombosis, poor endothelialization, inflammation, calcification, and especially mechanical damage induced biocompatibility change. No effective strategy has been reported to conserve the biological properties of BHV after long-term fatigue test. Here, a double-network tough hydrogel is introduced, which interpenetrate and anchor into the matrix of decellularized porcine pericardium (dCell-PP) to form robust and stable conformal coatings and reduce immunogenicity. The ionic crosslinked hyaluronic acid (HA) network mimics the glycocalyx on endothelium which improves antithrombosis and accelerates endothelialization; the chemical crosslinked hydrophilic polyacrylamide (PAAm) network further enhances antifouling properties and strengthens the shielding hydrogels and their interaction with dCell-PP. In vitro and rabbit ex vivo shunt assay demonstrate great hemocompatibility of polyacrylamide/HA hydrogel hybrid PP (P/H-PP). Cell experiments and rat subcutaneous implantation confirm satisfactory endothelialization, biocompatibility, and anticalcification properties. For hydrodynamic experiment, P/H-PP gains full mark at different flow conditions and sustains excellent biomechanical and biological properties after 200 000 000 cycles. P/H double-network hydrogel armoring dCell-PP is a promising progress to extend BHV durability for clinical implantation therapy.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Animales , Válvulas Cardíacas , Hidrogeles/química , Hidrogeles/farmacología , Pericardio/química , Conejos , Ratas , Porcinos
7.
Stem Cells Int ; 2022: 3705637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248256

RESUMEN

Background: The poor survival rates of transplanted mesenchymal stem cells (MSCs) in harsh microenvironments impair the efficacy of MSCs transplantation in myocardial infarction (MI). Extrinsic apoptosis pathways play an important role in the apoptosis of transplanted MSCs, and Fas apoptosis inhibitory molecule (FAIM) is involved in regulation of the extrinsic apoptosis pathway. Thus, we aimed to explore whether FAIM augmentation protects MSCs against stress-induced apoptosis and thereby improves the therapeutic efficacy of MSCs. Methods: We ligated the left anterior descending coronary artery (LAD) in the mouse heart to generate an MI model and then injected FAIM-overexpressing MSCs (MSCsFAIM) into the peri-infarction area in vivo. Moreover, FAIM-overexpressing MSCs were challenged with oxygen, serum, and glucose deprivation (OGD) in vitro, which mimicked the harsh microenvironment that occurs in cardiac infarction. Results: FAIM was markedly downregulated under OGD conditions, and FAIM overexpression protected MSCs against OGD-induced apoptosis. MSCsFAIM transplantation improved cell retention, strengthened angiogenesis, and ameliorated heart function. The antiapoptotic effect of FAIM was mediated by cellular-FLICE inhibitory protein (c-FLIP), and FAIM augmentation improved the protein expression of c-FLIP by reducing ubiquitin-proteasome-dependent c-FLIP degradation. Furthermore, FAIM inhibited the activation of JNK, and treatment with the JNK inhibitor SP600125 abrogated the reduction in c-FLIP protein expression caused by FAIM silencing. Conclusions: Overall, these results indicated that FAIM curbed the JNK-mediated, ubiquitination-proteasome-dependent degradation of c-FLIP, thereby improving the survival of transplanted MSCs and enhancing their efficacy in MI. This study may provide a novel approach to strengthen the therapeutic effect of MSC-based therapy.

8.
JACC Basic Transl Sci ; 7(7): 697-712, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35958694

RESUMEN

There are currently no pharmacological therapies for calcific aortic valve disease (CAVD). Here, we evaluated the role of protein tyrosine phosphatase 1B (PTP1B) inhibition in CAVD. Up-regulation of PTP1B was critically involved in calcified human aortic valve, and PTP1B inhibition had beneficial effects in preventing fibrocalcific response in valvular interstitial cells and LDLR-/- mice. In addition, we reported a novel function of PTP1B in regulating mitochondrial homeostasis by interacting with the OPA1 isoform transition in valvular interstitial cell osteogenesis. Thus, these findings have identified PTP1B as a potential target for preventing aortic valve calcification in patients with CAVD.

9.
J Hazard Mater ; 412: 125116, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33540267

RESUMEN

Bioaugmentation methods are frequently employed for pesticide pollution remediation; however, it is not clear whether the introduced bacteria affect the pesticide bound residue (BRs) composition and whether the BRs can be catabolized by the introduced strains. This study aimed at answering these questions by using 14C-chlorpyrifos (14C-CPF) and two CPF-degrading strains (Pseudomonas sp. DSP-1 and Cupriavidus sp. P2). The results showed that the BRs can be up to 83.0%, and that the CPF-BRs formed can be further transformed into 14CO2 by the strains. Indeed, the microbial inoculation can increase the CPF mineralization by 1.0-22.1 times and can decrease the BRs by up to ~50% of the control (on day 20). Compared with the control without bioaugmentation, microbial inoculation enhanced the release of BRs by 2.2-18.0 times. Adding biochar to the soil can greatly inhibit CPF mineralization and maintain the BR content at a relatively stable level. The CPF residue can affect the composition of the indigenous soil microbial community, but the introduction of bacteria for remediation did not have a significant effect. The results indicate that Pseudomonas sp. DSP-1 and Cupriavidus sp. P2 are useful for remediating both CPF extractable and bound residues.


Asunto(s)
Cloropirifos , Plaguicidas , Contaminantes del Suelo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
10.
J Agric Food Chem ; 69(26): 7324-7333, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34167301

RESUMEN

Chlorpyrifos (CPF) is one of the most critical insecticides in the world. However, many countries are gradually banning its use due to its reported hazardous impacts on humans. This study explored the possibility of reducing the environmental risk of CPF through appropriate agricultural management practices. Results showed that the environmental risk of CPF is lower under drainage conditions because there is more mineralization and less bound residues (BRs) than under submerged conditions. Bioaugmentation significantly enhanced the CPF mineralization and inhibited the formation of CPF-BRs. Biochar adsorbed CPF and thus reduced its bioavailability, but it could not completely eliminate the toxicity of CPF. In addition, bioaugmentation did not significantly affect the native microbial community of CPF-contaminated soil, suggesting its safety in reducing the environmental risk of CPF. The study indicated that the environmental risk of CPF could be reduced by appropriate agricultural management such as water management, bioaugmentation, soil biochar amendment, and selecting suitable soil types.


Asunto(s)
Cloropirifos , Insecticidas , Agricultura , Radioisótopos de Carbono , Cloropirifos/toxicidad , Humanos , Insecticidas/análisis , Insecticidas/toxicidad
11.
Mater Sci Eng C Mater Biol Appl ; 128: 112337, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474888

RESUMEN

An aging population and a rapid increase in the incidence of degenerative valve diseases have led to greater use of bioprosthetic heart valves (BHVs). The durability of glutaraldehyde cross-linked bioprostheses currently available for clinical use is poor due to calcification, coagulation, and degradation. Decellularization can partially reduce calcification by removal of xenogenic cells, but can also lead to thrombosis, which can be addressed by further surface modification. The natural sulfated polysaccharide ulvan possesses antithrombotic and anti-inflammatory properties, and can behave as a heparinoid to immobilize proteins through their heparin binding sites. VE-cadherin antibody and the Arg-Glu-Asp-Val (REDV) peptide can facilitate selective endothelial cell attachment, adhesion and proliferation. In this study, we functionalized decellularized porcine pericardium (DPP) with ulvan, REDV, and VE-cadherin antibody (U-R-VE). Ulvan was covalently modified to act as a protective coating and spacer for VE-cadherin antibody, and to immobilize REDV. In in vitro tests, we found that functionalization significantly and selectively promoted adhesion and growth of endothelial cells while reducing platelet adhesion, inflammation, and in vitro calcification of DPPs. In an in vivo subdermal implantation model, U-R-VE modified DPP exhibited greater endothelialization potential and biocompatibility compared with unmodified pericardium. Thus, U-R-VE modification provides a promising solution to the problem of preparing BHVs with enhanced endothelialization potential.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Animales , Antígenos CD , Cadherinas , Células Endoteliales , Válvulas Cardíacas , Polisacáridos , Porcinos
12.
Stem Cells Dev ; 30(7): 386-398, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33567991

RESUMEN

Declined function of aged mesenchymal stem cells (MSCs) diminishes the benefits of cell therapy for myocardial infarction (MI). Our previous study has demonstrated that SRT1720, a specific SIRT1 activator, could protect aged human MSCs (hMSCs) against apoptosis. The purpose of the present study was to investigate the role of mitochondria in the antiapoptotic effects of SRT1720. In addition, we established a nonhuman primate MI model to evaluate cell engraftment of SRT1720-pretreated aged hMSCs (SRT1720-OMSCs). A hydrogen peroxide (H2O2)-induced apoptosis model was established in vitro to mimic MI microenvironment. Compared with vehicle-treated aged hMSCs (Vehicle-OMSCs), SRT1720-OMSCs showed alleviated apoptosis level, significantly decreased caspase-3 and caspase-9 activation, and reduced release of cytochrome c when subjected to H2O2 treatment. Mitochondrial contents were compared between young and aged hMSCs and our data showed that aged hMSCs had lower mitochondrial DNA (mtDNA) copy numbers and protein expression levels of components of the mitochondrial electron transport chain (ETC) than young hMSCs. Also, treatment with SRT1720 resulted in enhanced MitoTracker staining, increased mtDNA levels and expression of mitochondrial ETC components in aged hMSCs. Furthermore, SRT1720-OMSCs exhibited elevated mitochondrial respiratory capacity and higher mitochondrial membrane potential. In vivo study demonstrated that SRT1720-OMSCs had higher engraftment rates than Vehicle-OMSCs at 3 days after transplantation into the infarcted nonhuman primate hearts. Taken together, these results suggest that SRT1720 promotes mitochondrial biogenesis and function of aged hMSCs, which is involved in its protective effects against H2O2-induced apoptosis. These findings encourage further exploration of the optimization of aged stem cells function via regulating mitochondrial function.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Infarto del Miocardio/terapia , Biogénesis de Organelos , Anciano , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Supervivencia de Injerto/efectos de los fármacos , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Sirtuina 1/metabolismo , Trasplante Heterólogo
13.
Sci Total Environ ; 704: 135398, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31836228

RESUMEN

The differences of PBDE absorption, accumulation, and metabolism in different cultivars of the same crop are rarely explored. This study used 14C tracing to fully demonstrate the uptake and transformation of soil-borne BDE209 in three rice cultivars, including two indica (HHZ and YD1) and one japonica cultivars (NJ3). Results showed that about 6.9, 17.2, and 17.4% of the applied 14C-BDE209 were transformed to 14C-metabolites in soils planted with HHZ, YD1, and NJ3, respectively. The 14C-BDE209 and its 14C-metabolites in soil could be absorbed by the rice and gradually transported to its root, stem, leaf, and grain, with the total whole-plant uptake of 8.52, 4.55 and 3.43 nmol for HHZ, YD1, and NJ3, respectively. The cultivar of HHZ had the greatest whole-plant 14C absorption but the lowest ΣPBDEs residues in its grain, with the ΣPBDEs of 421.8, 454.2 and 967.0 ng g-1 for HHZ, YD1, and NJ3, respectively. BDE-209 accounted for 90%, 31% and 50% of the ΣPBDEs in the grain from HHZ, YD1, and NJ3, respectively. The estimated daily intake (EDI) amounts of ΣPBDEs were 928, 1056, and 2675 ng kg-1 bw d-1 via consuming rice grains from HHZ, YD1, and NJ3, respectively, which were below the safe threshold limits for human consumption. This study proved the different BDE-209 absorption, accumulation and transformation in different rice cultivars, which potentially suggests the need of considering cultivar differences in assessing the dietary risks of PBDEs.


Asunto(s)
Éteres Difenilos Halogenados/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Grano Comestible , Humanos , Hojas de la Planta , Suelo
14.
Front Cell Dev Biol ; 8: 588023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195247

RESUMEN

BACKGROUND: Poor cell survival after transplantation restricts the therapeutic potential of mesenchymal stem cell (MSC) transplantation into infarcted hearts, particularly in older individuals. TPP1, a component of the shelterin complex that is involved in telomere protection, is highly expressed in young MSCs but declines in aged ones. Here, we explore whether TPP1 overexpression in aged mouse MSCs improves cell viability in vivo and in vitro. METHODS: Aged mouse MSCs overexpressing TPP1 were injected into the peri-infarct area of the mouse heart after left anterior descending coronary artery ligation. In parallel, to evaluate cellular-level effects, H2O2 was applied to MSCs in vitro to mimic the microenvironment of myocardial injury. RESULTS: In vivo, the transplantation of aged MSCs overexpressing TPP1 resulted in improved cell survival, enhanced cardiac function, and reduced fibrosis compared to unmodified aged MSCs. In vitro, TPP1 overexpression protected aged MSCs from H2O2-induced apoptosis and enhanced DNA double-strand break (DSB) repair. In addition, the phosphorylation of AKT and the key DSB repair protein MRE11 were both significantly upregulated in aged MSCs that overexpressed TPP1. CONCLUSIONS: Our results reveal that TPP1 can enhance DNA repair through the AKT/MRE11 pathway, thereby improving the therapeutic effects of aged MSC transplantation and offering significant potential for the clinical application of autologous transplantation in aged patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA