Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D798-D807, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889020

RESUMEN

Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.


Asunto(s)
Bases de Datos Genéticas , Gripe Humana , Orthomyxoviridae , Humanos , Anticuerpos/genética , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Mutación , Orthomyxoviridae/genética , Variación Genética , Genoma Viral , Medición de Riesgo
2.
Nucleic Acids Res ; 51(D1): D708-D716, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271801

RESUMEN

Fungal taxonomy is a complex and rapidly changing subject, which makes proper naming of fungi challenging for taxonomists. A registration platform with a standardized and information-integrated database is a powerful tool for efficient research on fungal taxonomy. Fungal Names (FN, https://nmdc.cn/fungalnames/; launched in 2011) is one of the three official fungal nomenclatural repositories authorized by the International Nomenclature Committee for Fungi (NCF). Currently, FN includes >567 000 taxon names from >10 000 related journals and books published since 1596 and covers >147 000 collection records of type specimens/illustrations from >5000 preserving agencies. FN is also a knowledge base that integrates nomenclature information with specimens, culture collections and herbaria/fungaria, publications and taxonomists, and represents a summary of the history and recent advances in fungal taxonomy. Published fungal names are categorized based on well-accepted nomenclature rules and can be readily searched with different keywords and strategies. In combination with a standardized name checking tool and a sequence alignment-based identification package, FN makes the registration and typification of nomenclatural novelties of fungi convenient and accurate.


Asunto(s)
Hongos , Bases del Conocimiento , Manejo de Datos , Bases de Datos Factuales , Alineación de Secuencia , Hongos/clasificación , Terminología como Asunto
3.
Nucleic Acids Res ; 50(D1): D888-D897, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634813

RESUMEN

The genomic variations of SARS-CoV-2 continue to emerge and spread worldwide. Some mutant strains show increased transmissibility and virulence, which may cause reduced protection provided by vaccines. Thus, it is necessary to continuously monitor and analyze the genomic variations of SARS-COV-2 genomes. We established an evaluation and prewarning system, SARS-CoV-2 variations evaluation and prewarning system (VarEPS), including known and virtual mutations of SARS-CoV-2 genomes to achieve rapid evaluation of the risks posed by mutant strains. From the perspective of genomics and structural biology, the database comprehensively analyzes the effects of known variations and virtual variations on physicochemical properties, translation efficiency, secondary structure, and binding capacity of ACE2 and neutralizing antibodies. An AI-based algorithm was used to verify the effectiveness of these genomics and structural biology characteristic quantities for risk prediction. This classifier could be further used to group viral strains by their transmissibility and affinity to neutralizing antibodies. This unique resource makes it possible to quickly evaluate the variation risks of key sites, and guide the research and development of vaccines and drugs. The database is freely accessible at www.nmdc.cn/ncovn.


Asunto(s)
COVID-19/virología , Bases de Datos Factuales , Mutación , SARS-CoV-2/genética , Algoritmos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/metabolismo , Inteligencia Artificial , Cartilla de ADN , Genoma Viral , Humanos
4.
Int J Mol Sci ; 20(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857183

RESUMEN

The aminotransferase from Bacillus circulans (BtrR), which is involved in the biosynthesis of butirosin, catalyzes the pyridoxal phosphate (PLP)-dependent transamination reaction to convert valienone to ß-valienamine (a new ß-glycosidase inhibitor for the treatment of lysosomal storage diseases) with an optical purity enantiomeric excess value. To explore the stereoselective mechanism of valienamine generated by BtrR, multiple molecular dynamics (MD) simulations were performed for the BtrR/PLP/valienamine and BtrR/PLP/ß-valienamine complexes. The theoretical results showed that ß-valienamine could make BtrR more stable and dense than valienamine. ß-valienamine could increase the hydrogen bond probability and decrease the binding free energy between coenzyme PLP and BtrR by regulating the protein structure of BtrR, which was conducive to the catalytic reaction. ß-valienamine maintained the formation of cation-p interactions between basic and aromatic amino acids in BtrR, thus enhancing its stability and catalytic activity. In addition, CAVER 3.0 analysis revealed that ß-valienamine could make the tunnel of BtrR wider and straight, which was propitious to the removal of products from BtrR. Steered MD simulation results showed that valienamine interacted with more residues in the tunnel during dissociation compared with ß-valienamine, resulting in the need for a stronger force to be acquired from BtrR. Taken together, BtrR was more inclined to catalyze the substrates to form ß-valienamine, either from the point of view of the catalytic reaction or product removal.


Asunto(s)
Bacillus/metabolismo , Ciclohexenos/metabolismo , Hexosaminas/metabolismo , Simulación de Dinámica Molecular , Transaminasas/metabolismo , Bacillus/química , Bacillus/enzimología , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Transaminasas/química
5.
Int J Mol Sci ; 19(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231501

RESUMEN

Zearalenone hydrolase (ZHD) is the only reported α/ß-hydrolase that can detoxify zearalenone (ZEN). ZHD has demonstrated its potential as a treatment for ZEN contamination that will not result in damage to cereal crops. Recent researches have shown that the V153H mutant ZHD increased the specific activity against α-ZOL, but decreased its specific activity to ß-ZOL. To understand whyV153H mutation showed catalytic specificity for α-ZOL, four molecular dynamics simulations combining with protein network analysis for wild type ZHD α-ZOL, ZHD ß-ZOL, V153H α-ZOL, and V153H ß-ZOL complexes were performed using Gromacs software. Our theoretical results indicated that the V153H mutant could cause a conformational switch at the cap domain (residues Gly161⁻Thr190) to affect the relative position catalytic residue (H242). Protein network analysis illustrated that the V153H mutation enhanced the communication with the whole protein and residues with high betweenness in the four complexes, which were primarily assembled in the cap domain and residues Met241 to Tyr245 regions. In addition, the existence of α-ZOL binding to V153H mutation enlarged the distance from the OAE atom in α-ZOL to the NE2 atom in His242, which prompted the side chain of H242 to the position with catalytic activity, thereby increasing the activity of V153H on the α-ZOL. Furthermore, α-ZOL could easily form a right attack angle and attack distance in the ZHD and α-ZOL complex to guarantee catalytic reaction. The alanine scanning results indicated that modifications of the residues in the cap domain produced significant changes in the binding affinity for α-ZOL and ß-ZOL. Our results may provide useful theoretical evidence for the mechanism underlying the catalytic specificity of ZHD.


Asunto(s)
Hidrolasas/metabolismo , Hypocreales/enzimología , Zearalenona/metabolismo , Zeranol/análogos & derivados , Sustitución de Aminoácidos , Hidrolasas/química , Hidrolasas/genética , Hypocreales/química , Hypocreales/genética , Hypocreales/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación Puntual , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Zearalenona/química , Zeranol/química , Zeranol/metabolismo
6.
Imeta ; 1(4): e55, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38867900

RESUMEN

Pan-genomics is one of the most powerful means to study genomic variation and obtain a sketch of genes within a defined clade of species. Though there are a lot of computational tools to achieve this, an integrated framework to evaluate their performance and offer the best choice to users has never been achieved. To ease the process of large-scale prokaryotic genome analysis, we introduce Integrated Prokaryotes Genome and pan-genome Analysis (IPGA), a one-stop web service to analyze, compare, and visualize pan-genome as well as individual genomes, that rids users of installing any specific tools. IPGA features a scoring system that helps users to evaluate the reliability of pan-genome profiles generated by different packages. Thus, IPGA can help users ascertain the profiling method that is most suitable for their data set for the following analysis. In addition, IPGA integrates several downstream comparative analysis and genome analysis modules to make users achieve diverse targets.

7.
J Biomol Struct Dyn ; 38(1): 1-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30784357

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays an important role in the expression of genes, whose function is exerted through protein-protein interactions (PPIs), such as the transcriptional co-activator (CREB)-binding protein (CBP) and p300. Under hypoxic conditions, HIF-1is stabilized and translocated to CBP or p300, leading to the hypoxic response cascade. Furthermore, the PPI between HIF and p300/CBP is a potential cancer target for their role in the hypoxic response. In this study, molecular dynamics (MD) simulation was used to explore the conformational change for the p300 binding to one subunit of HIF-1, namely HIF-1α. Results indicated that HIF-1α-p300 complex was stable during MD simulation. New H-bonds were made in the intra-chain of p300 with HIF-1α binding. Inhibiting the HIF-1α-p300 interaction modulated the HIF-1α identification of selective molecules, which may indicate the target metabolic and cellular processes that enable the survival and growth of tumors in cancer chemotherapy. CAVER 3.0 results suggested that three main tunnels were present, according to helices 1, 2 and 3 of p300. To explore the unbinding pathway for HIF-1α via p300, we selected helices 1, 2 and 3 on the HIF-1α as a new ligand to explore the unbinding pathway via its own tunnel. For helix 1, R368 in p300 formed a H-bond with E816 in HIF1-α. A345 and D346 in p300 formed H-bonds with N803 in HIF-1α. A H-bond existed between K351(p300) and E789 (Hif1-α). These molecules may be the key residues in the unbinding pathway via its tunnel.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteína p300 Asociada a E1A/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Algoritmos , Aminoácidos/química , Sitios de Unión , Dominio Catalítico , Proteína p300 Asociada a E1A/metabolismo , Humanos , Enlace de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Zinc/química
8.
Front Chem ; 6: 223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967763

RESUMEN

Thermus thermophiles Argonaute (TtAgo) is a complex, which is consisted of 5'-phosphorylated guide DNA and a series of target DNA with catalytic activities at high temperatures. To understand why high temperatures are needed for the catalytic activities, three molecular dynamics simulations and binding free energy calculations at 310, 324, and 338K were performed for the TtAgo-DNA complex to explore the conformational changes between 16-mer guide DNA/15-mer target DNA and TtAgo at different temperatures. The simulation results indicate that a collapse of a small ß-strand (residues 507-509) at 310 K caused Glu512 to move away from the catalytic residues Asp546 and Asp478, resulting in a decrease in catalytic activity, which was not observed in the simulations at 324 and 338 K. The nucleic acid binding channel became enlarged at 324 and 338K, thereby facilitating the DNA to slide in. Binding free energy calculations and hydrogen bond occupancy indicated that the interaction between TtAgo and the DNA was more stable at 324K and 338K than at 310 K. The DNA binding pocket residues Lys575 and Asn590 became less solvent accessible at 324 and 338K than at 310 K to influence hydrophilic interaction with DNA. Our simulation studies shed some light on the mechanism of TtAgo and explained why a high temperature was needed by TtAgo during gene editing of CRISPR.

9.
Front Chem ; 6: 437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320068

RESUMEN

The scarcity, richness, and other important physiological functions of D-psicose make it crucial to increase the yield of D-psicose. The production of D-psicose can be accomplished by D-psicose 3-epimerase (DPEase) from Clostridium bolteae (CbDPEase) catalyzing the substrate D-fructose. Although the catalytic efficiency of the CbDPEase has been raised via using the site-directed mutagenesis (Y68I/G109P) technique, structure-activity relationship in the wild-type CbDPEase and Y68I/G109P mutant is currently poorly understood. In our study, a battery of molecular modeling methods [homology modeling, adaptive steered molecular dynamics (ASMD) simulations, and Molecular Mechanics/Generalized Born Surface Area (MM-GB/SA)], combined with protein structure networks, were employed to theoretically characterize the reasons for the differences in the abilities of the D-fructose catalyzed by the wild-type CbDPEase and Y68I/G109P mutant. Protein structure networks demonstrated that site-directed mutagenesis enhanced the connectivity between D-fructose and CbDPEase, leading to the increased catalytic efficiency mediated by the functional residues with high betweenness. During the dissociation of the D-fructose from the Y68I/G109P mutant, planes of benzene rings of F248 and W114 could be continuously parallel to the stretching direction of D-fructose. It made the tunnel have an open state and resulted in the stable donor-π interactions between D-fructose and the benzene rings around 18Å. The stronger substrate-protein interactions were detected in the Y68I/G109P mutant, instead of in the wild-type CbDPEase, which were consistent with the binding free energy and Potential Mean of Force (PMF) results. The theoretical results illustrated the reasons that Y68I/G109P mutations increased the catalytic efficiency of CbDPEase and could be provided the new clue for further DPEase engineering.

10.
PLoS One ; 13(11): e0207234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30444912

RESUMEN

Adenosine deaminase (ADA) catalyzes the deamination of adenosine, which is important in purine metabolism. ADA is ubiquitous to almost all human tissues, and ADA abnormalities have been reported in various diseases, including rheumatoid arthritis. ADA can be divided into two conformations based on the inhibitor that it binds to: open and closed forms. Here, we chose three ligands, namely, FR117016 (FR0), FR221647 (FR2) (open form), and HDPR (PRH, closed form), to investigate the inhibition mechanism of ADA and its effect on ADA through molecular dynamics simulations. In open forms, Egap and electrostatic potential (ESP) indicated that electron transfer might occur more easily in FR0 than in FR2. Binding free energy and hydrogen bond occupation revealed that the ADA-FR0 complex had a more stable structure than ADA-FR2. The probability of residues Pro159 to Lys171 of ADA-FR0 and ADA-FR2 to form a helix moderately increased compared with that in nonligated ADA. In comparison with FR0 and FR2 PRH could maintain ADA in a closed form to inhibit the function of ADA. The α7 helix (residues Thr57 to Ala73) of ADA in the closed form was mostly unfastened because of the effect of PRH. The number of H bonds and the relative superiority of the binding free energy indicated that the binding strength of PRH to ADA was significantly lower than that of an open inhibitor, thereby supporting the comparison of the inhibitory activities of the three ligands. Alanine scanning results showed that His17, Gly184, Asp295, and Asp296 exerted the greatest effects on protein energy, suggesting that they played crucial roles in binding to inhibitors. This study served as a theoretical basis for the development of new ADA inhibitors.


Asunto(s)
Inhibidores de la Adenosina Desaminasa/farmacología , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Inhibidores de la Adenosina Desaminasa/química , Sitios de Unión/genética , Estabilidad de Enzimas , Humanos , Enlace de Hidrógeno , Cinética , Ligandos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Análisis de Componente Principal , Conformación Proteica , Conformación Proteica en Hélice alfa , Teoría Cuántica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA