Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503102

RESUMEN

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Asunto(s)
Monitoreo del Ambiente , Minería , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Medición de Riesgo , China , Monitoreo del Ambiente/métodos , Humanos , Minas de Carbón , Metales Pesados/análisis , Metales/análisis , Suelo/química , Carbón Mineral , Contaminación Ambiental/análisis , Contaminación Ambiental/estadística & datos numéricos
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621925

RESUMEN

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogénicas c-akt , Semen , Microtomografía por Rayos X , Fosfatidilinositol 3-Quinasas , Ratas Sprague-Dawley , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inducido químicamente
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621928

RESUMEN

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Asunto(s)
Artritis Reumatoide , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Membrana Sinovial , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Perfilación de la Expresión Génica/métodos
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812239

RESUMEN

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Asunto(s)
Dalbergia , Medicamentos Herbarios Chinos , Metabolómica , Microcirculación , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Microcirculación/efectos de los fármacos , Dalbergia/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Miocardio/metabolismo , Vasos Coronarios/fisiopatología , Humanos
5.
Risk Manag Healthc Policy ; 17: 91-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38222796

RESUMEN

Purpose: This study aims to investigate the impact of multidimensional quality management tools in establishing a medical adverse event management system, with the aim of continuously improving medical quality and safety while ensuring patient well-being. Methods: This study introduces risk management theories, such as the "Gray Rhino Theory", and employs quality management tools like the Plan-Do-Check-Act (PDCA) cycle, Quality Control Circle (QCC), and Root Cause Analysis (RCA), to provide relevant quality management education and training to employees. This approach facilitates the establishment of a medical adverse event management system that encourages reporting and fosters a blame-free reporting culture, while simultaneously implementing quality management across the entire process. The regular utilization of the QCC facilitates ongoing quality improvement. Furthermore, for sentinel events and patient harm incidents with educational values, the study employs the Incident Decision Tree (IDT) to determine appropriate actions. Additionally, the hospital initiates RCA for system-wide improvements, focusing on areas such as management, institutional processes, and environmental aspects. Moreover, an internal medical quality improvement case competition is organized, with outstanding cases being selected to participate in the multidimensional quality management competition organized by the National Quality Management Alliance. Results: The study reveals a significant improvement in employees' awareness of adverse events, the percentage of employees reporting adverse events increased significantly from 39.15% in 2019 to 49.77% in 2022, P=0.002. Furthermore, the adverse event reporting rate has risen significantly from 2.78% (2019) to 5.96% (2022), P=0.002. Additionally, each department has been able to utilize QCC or RCA tools for quality improvement, thereby further reinforcing the development of a patient safety culture. Conclusion: Multidimensional quality management tools play a crucial role in establishing a hospital's adverse event management system, promoting continuous improvement in medical quality, ensuring patient safety, and effectively implementing a culture of patient safety.

6.
Histol Histopathol ; 39(8): 1043-1051, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38213260

RESUMEN

This study aimed to explore the expression and hypermethylation of EPB41L3 and JAM3 in cervical squamous cell carcinoma (CSCC) and to investigate their clinical significance. JAM3 and EPB41L3 mRNA expression was analyzed using a public database, and protein expression was detected using immunohistochemistry. The methylation status of JAM3 and EPB41L3 was detected in CSCC tissues and cervical cytological specimens using a quantitative methylation-specific PCR (qMSP). JAM3 and EPB41L3 mRNA were downregulated in CSCC. The JAM3 protein was positively detected in 39.4% of CSCC tissues and frequently expressed in those with lower FIGO stage and no lymph node metastasis. EPB41L3 was expressed in 18.9% of CSCC tissues. The hypermethylation of JAM3 was detected in 52.3% of CSCC tissues and related to higher FIGO stage and lymph node metastasis. EPB41L3 hypermethylation was detected in 72.7% of CSCC tissues and related to older ages and lymph node metastasis. In cervical cytological specimens, no methylation of JAM3 and EPB41L3 was found in normal or inflamed cervical epithelial cells. The methylation of JAM3 was detected in 0%, 8.3%, and 6.3% of ASCUS, LSIL, and HSIL samples, while EPB41L3 was detected in 12.5%, 42.9%, and 71.4%, respectively. The sensitivity of the combination of JAM3 and EPB41L3 methylation detection in ASCUS, LSIL, and HSIL was 8.3%, 15.6%, and 85.7%, respectively. The specificity of the combination of JAM3 and EPB41L3 methylation detection was 100%. Downregulation of JAM3 and EPB41L3 by hypermethylation was detected in CSCC. JAM3 and EPB41L3 hypermethylation are potential biomarkers for cervical cancer screening.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Moléculas de Adhesión Celular , Metilación de ADN , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Adulto , Metástasis Linfática/genética , Anciano , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Relevancia Clínica , Proteínas de Microfilamentos
7.
Huan Jing Ke Xue ; 45(2): 1049-1057, 2024 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-38471942

RESUMEN

Risk assessment is a critical part of risk management for contaminated sites. However, in the specific management practice of As-contaminated sites, it is difficult to obtain realistic health risks for contaminated sites based on the total amount of pollutants and determined values of the model, thus preventing the control requirements of later remediation to be met. An increasing number of studies have recently been conducting risk assessments by considering bioavailability, modification parameters, and combined probabilistic models. To improve the accuracy of risk assessment results, taking a large As-contaminated site as a case, 432 sampling sites were set up and collected at different depths to analyze the level and distribution characteristics of As pollution, and probabilistic risk assessment was conducted with the modification of model parameters through literature research and Monte Carlo simulation. Then, the impact of traditional methods and probabilistic methods on health risk assessment was explored in comparison. The results indicated that ω(As) in the top soil of the study area ranged from 2.70-97.0 mg·kg-1, with a spatial variation coefficient of 0.61 and weaker spatial continuity. The carcinogenic risk and hazard index obtained by the traditional risk assessment method were 2.12E-4 and 8.36, respectively, which obviously overestimated the actual risk level and were not conductive to the refined management of As-contaminated sites. Combined with modification of model parameters and probabilistic risk assessment, the non-carcinogenic risk for adults and children was found to be at an acceptable level, and the carcinogenic risk was reduced by nearly an order of magnitude compared to that in the conventional method. Considering the relative biological effectiveness (RBA) of As, the 95% quantile of the total carcinogenic risk was 1.24E-5, a reduction of up to 36.41% compared to the uncorrected corresponding risk value of 1.95E-5. The carcinogenic risk of soil As for adults and children in the study area exceeded acceptable risk levels 1E-6, with oral ingestion of soil being the primary route of exposure. In addition, the results of the sensitivity analysis of the parameters showed that As concentration, daily oral ingestion rate of soils, and exposure duration of children had relatively larger effects for health risks. This work will provide a methodological and theoretical basis for achieving accurate risk assessment of As-contaminated sites and provide concepts for refined risk management.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Arsénico/análisis , Método de Montecarlo , Medición de Riesgo/métodos , Contaminación Ambiental/análisis , Suelo , Carcinógenos/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , China , Metales Pesados/análisis
8.
Talanta ; 274: 126005, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599116

RESUMEN

In preparing monoclonal antibodies by hybridoma cell technology, the quality of B lymphocytes used for cell fusion directly affects the sensitivity of monoclonal antibodies. To obtain B-lymphocytes producing high-quality specific antibodies for cell fusion during the immunization phase of the antigen, we prepared a TH2-Cell stimulatory delivery system as a novel adjuvant. Astragalus polysaccharide has a good ability to enhance antigenic immune response, and it was encapsulated in biocompatible materials PLGA as an immunostimulatory factor to form the delivery system (APS-PLGA). The preparation conditions of APSP were optimized using RSM to attain the highest utilization of APS. Immunization against ZEN-BSA antigen using APSP as an adjuvant to obtain B lymphocytes producing ZEN-specific antibodies for cell fusion. As results present, APSP could induce a stronger TH2 immune response through differentiating CD4 T cells and promoting IL-4 and IL-6 cytokines. Moreover, it could slow down the release efficiency of ZEN-BSA and enhance the targeting of ZEN-BSA to lymph nodes in vivo experiments. Ultimately, the sensitivity of mouse serum ZEN-specific antibodies was enhanced upon completion of immunization, indicating a significant upregulation of high-quality B lymphocyte expression. In the preparation of monoclonal antibodies, the proportion of positive wells for the first screening was 60%, and the inhibition rates of the antibodies were all similar (>50%). Then we obtained the ZEN monoclonal antibody with IC50 of 0.049 ng/mL, which was more sensitive than most antibodies prepared under conventional adjuvants. Finally, a TRFIAS strip assay was preliminarily established with a LOD value of 0.246 ng/mL.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Monoclonales , Linfocitos B , Ratones Endogámicos BALB C , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Nanopartículas/química , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Ratones , Femenino , Activación de Linfocitos/efectos de los fármacos , Inmunización
9.
Toxins (Basel) ; 16(1)2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38251228

RESUMEN

To achieve accurate detection of AFB1 toxin content in agricultural products and avoid false-positive rates in the assays, the specificity of mAbs is critical. We improved the specificity of the prepared monoclonal antibodies by modifying the traditional limiting dilution subcloning method. The traditional finite dilution method was modified with three-stage screening (the trending concentration of standards used in the screening is low-high-low) to achieve high specificity in pre-cell screening and increased the number of subclones to 10 to achieve the de-homologation of antibodies. A modified limiting dilution obtained a highly specific AFB1 monoclonal cell line, ZFG8, with a 50% inhibition concentration (IC50) of 0.3162 ng/mL. Notably, it exhibited the highest specificity compared to anti-AFB1 monoclonal antibodies prepared by other investigators. The maximum cross-reactivity of the mAb with structural analogues for AFB2, AFG1, AFG2, and AFM1 was 0.34%. The results showed that this type of screening improves the monoclonal antibodies' specificity. Based on this ZFG8 monoclonal antibody, an icELISA assay was established with an IC50 of 0.2135 ng/mL for AFB1. The limit of the linear detection range of icELISA is 0.0422-1.29267 ng/mL with reasonable specificity and precision. The recoveries of AFB1 in samples of corn flour and wheat meal ranged from 84 to 107%, with CVs below 9.3%. The recoveries of structural analogues (AFB2, AFM1, AFG1, and AFG2) were less than 10% in both corn flour and wheat meal. The results showed that the prepared AFB1 monoclonal antibody could accurately and specifically recognize AFB1 residues in agricultural products while ignoring the effects of other structural analogues.


Asunto(s)
Agricultura , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Bioensayo , Línea Celular , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA