Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Mater ; 23(3): 347-355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37443381

RESUMEN

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

2.
Nano Lett ; 23(5): 1836-1842, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36799930

RESUMEN

In two-dimensional small-angle twisted bilayers, van der Waals (vdW) interlayer interaction introduces an atomic-scale reconstruction, which consists of a moiré-periodic network of local subdegree lattice rotations. However, real-space measurement of the subdegree lattice rotation requires extremely high spatial resolution, which is an outstanding challenge in an experiment. Here, a topmost small-period graphene moiré pattern is introduced as a magnifying lens to magnify sub-Angstrom lattice distortions in small-angle twisted bilayer graphene (TBG) by about 2 orders of magnitude. Local moiré periods of the topmost graphene moiré patterns and low-energy van Hove singularities of the system are spatially modified by the atomic-scale reconstruction of the underlying TBG, thus enabling real-space mapping of the networks of the subdegree lattice rotations both in structure and in electronic properties. Our results indicate that it is quite facile to study subdegree lattice rotation in vdW systems by measuring the periods of the topmost moiré superlattice.

3.
Phys Rev Lett ; 129(5): 056803, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960565

RESUMEN

Strain-induced pseudomagnetic fields can mimic real magnetic fields to generate a zero-magnetic-field analog of the Landau levels (LLs), i.e., the pseudo-Landau levels (PLLs), in graphene. The distinct nature of the PLLs enables one to realize novel electronic states beyond what is feasible with real LLs. Here, we show that it is possible to realize exotic electronic states through the coupling of zeroth PLLs in strained graphene. In our experiment, nanoscale strained structures embedded with PLLs are generated along a one-dimensional (1D) channel of suspended graphene monolayer. Our results demonstrate that the zeroth PLLs of the strained structures are coupled together, exhibiting a serpentine pattern that snakes back and forth along the 1D suspended graphene monolayer. These results are verified theoretically by large-scale tight-binding calculations of the strained samples. Our result provides a new approach to realizing novel quantum states and to engineering the electronic properties of graphene by using localized PLLs as building blocks.

4.
Phys Rev Lett ; 129(17): 176402, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332255

RESUMEN

We report an experimental study of a high-order moiré pattern formed in graphene-monolayer xenon heterostructure. The moiré period is in situ tuned from few nanometers to +∞, by adjusting the lattice constant of the xenon monolayer through annealing. Using angle-resolved photoemission spectroscopy, we observe that Dirac node replicas move closer and finally overlap with a gap opening, as the moiré pattern expands to +∞ and evolves into a Kekulé distortion. A moiré Hamiltonian coupling Dirac fermions from different valleys explains experimental results and indicates narrow moiré band. Our Letter demonstrates a platform to study continuous evolution of the moiré pattern, and provides an unprecedented approach for tailoring Dirac fermions with tunable intervalley coupling.

5.
Small ; 17(45): e2103442, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34569140

RESUMEN

Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.


Asunto(s)
Semiconductores , Espectrometría Raman , Galio , Reproducibilidad de los Resultados
6.
Phys Chem Chem Phys ; 22(20): 11567-11571, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32400823

RESUMEN

Searching for half-metals in low dimensional materials is not only of scientific importance, but also has important implications for the realization of spintronic devices on a small scale. In this work, we show theoretically that simple bending can induce spin-splitting in bilayer silicene. For bilayer silicene with Bernal stacking, the monolayer has a long range ferromagnetic spin order and between the two monolayers, the spin orders are opposite, giving rise to an antiferromagnetic configuration for the ground state of the bilayer silicene. Under bending, the antiferromagnetic spin order is retained but the energetic degeneracy of opposite spin states is lifted. Due to the unusual deformation potentials of the conduction band minimum (CBM) and valence band maximum (VBM) as revealed by density-functional theory calculations and density-functional tight-binding calculations, this spin-splitting is nearly proportional to the degree of bending deformation. Consequently, the spin-splitting can be significant and the desired half-metallic state may emerge when the bending increases, which has been verified by direct simulation of the bent bilayer silicene using the generalized Bloch theorem. Our results hint that bilayer silicene may be an excellent candidate for half-metallicity.

7.
Phys Chem Chem Phys ; 21(15): 7750-7755, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30681678

RESUMEN

Two-dimensional CrI3 has attracted much attention as it is reported to be a ferromagnetic semiconductor with a Curie temperature of around 45 K. By performing first-principles calculations, we find that the magnetic ground state of CrI3 is variable under biaxial strain. Our theoretical investigations show that the ground state of monolayer CrI3 is ferromagnetic under compression, but becomes antiferromagnetic under tension. Particularly, the transition occurs under a feasible in-plane strain of around 1.8%. Accompanied by the transition of the magnetic ground state, CrI3 undergoes a transition from magnetic-metal to half-metal to half-semiconductor to spin-relevant semiconductor when the strain varies from -15% to 10%. We attribute these transitions to the variation of the d-orbitals of Cr atoms and the p-orbitals of I atoms. Generally, we report a series of magnetic and electronic phase transitions in strained CrI3, which will help both theoretical and experimental researchers in further understanding the tunable electronic and magnetic properties of CrI3 and its analogs.

8.
Phys Rev Lett ; 114(4): 047403, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679908

RESUMEN

In this Letter, we study the electronic structures and optical properties of partially and fully fluorinated graphene by a combination of ab initio G0W0 calculations and large-scale multiorbital tight-binding simulations. We find that, for partially fluorinated graphene, the appearance of paired fluorine atoms is more favorable than unpaired atoms. We also show that different types of structural disorder, such as carbon vacancies, fluorine vacancies, fluorine vacancy clusters and fluorine armchair and zigzag clusters, will introduce different types of midgap states and extra excitations within the optical gap. Furthermore, we argue that the local formation of sp3 bonds upon fluorination can be distinguished from other disorder inducing mechanisms which do not destroy the sp2 hybrid orbitals by measuring the polarization rotation of passing polarized light.

9.
Phys Rev Lett ; 115(18): 186801, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565485

RESUMEN

We performed calculations of electronic, optical, and transport properties of graphene on hexagonal boron nitride with realistic moiré patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.

10.
J Phys Condens Matter ; 36(17)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232397

RESUMEN

The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.

11.
Front Microbiol ; 15: 1356171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601928

RESUMEN

Introduction: By implementing small-scale and efficient fertilization techniques, it is possible to enhance the activity of microorganisms, thereby improving soil carbon sequestration and ecological value in agriculture. Methods: In this study, field experiments were conducted using various types of fertilizers: organic fertilizer, microbial fungal fertilizer, composite fertilizer, and an unfertilized control (CK). Additionally, different dosages of compound fertilizers were applied, including 0.5 times compound fertilizers, constant compound fertilizers, 1.5 times compound fertilizers and CK. Using advanced technologies such as Illumina MiSeq high-throughput sequencing, PICRUSt2 prediction, Anosim analysis, redundancy analysis, canonical correlation analysis, and correlation matrix, soil organic carbon (SOC) content and components, bacterial diversity, metabolic functions, and interaction mechanisms were examined in different fields. Results and Discussion: The results showed pronounced effects of various fertilization modes on SOC and the bacterial community, particularly in the topsoil layer (0-20 cm). Organic fertilizer treatments increased the richness and diversity of bacterial communities in the soil. However, conventional doses and excessive application of compound fertilizers reduced the diversity of soil bacterial communities and SOC content. Additionally, different fertilization treatments led to an increase in easily oxidizable organic carbon (EOC) contents. Interestingly, the relationship between SOC components and soil bacteria exhibited inconsistency. EOC was positively correlated with the bacterial diversity index. Additionally, Chloroflexi exhibited a negative correlation with both SOC and its components. The influence of metabolismon primary metabolic functions on the content of SOC components in the soil was more notable. It included seven types of tertiary functional metabolic pathways significantly correlated with SOC components (p < 0.05). Purpose and Significance: These findings enhance the understanding of the relative abundance of bacterial communities, particularly those related to the carbon cycle, by adjusting agricultural fertilization patterns. This adjustment serves as a reference for enhancing carbon sinks and reducing emissions in agricultural soils.

12.
Nanoscale Horiz ; 9(3): 449-455, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38198181

RESUMEN

Experiments have shown that nanoscale ripples in a graphene membrane exhibit unexpectedly high catalytic activity with respect to hydrogen dissociation. Nonetheless, the catalytic selectivity of nanorippled graphene remains unknown, which is an equally important property for assessing a catalyst's potential and its fit-for-purpose applications. Herein, we examine the catalytic selectivity of nanorippled graphene using a model reaction of molecular hydrogen with another simple but double-bonded molecule, oxygen, and comparing the measurement results with those from splitting of hydrogen molecules. We show that although nanorippled graphene exhibits a high catalytic activity toward hydrogen dissociation, the activity for catalyzing the hydrogen-oxygen reaction is quite low, translating into a strong catalytic selectivity. The latter reaction involves the reduction of oxygen molecules by the dissociated hydrogen adatoms, which requires additional energy cost and practically determines the selectivity. In this sense, the well-established information about reactions in general of atomic hydrogen with many other species in the literature could potentially predict the selectivity of nanorippled graphene as a catalyst. Our work provides implications for the catalytic properties of nanorippled graphene, especially its selectivity. The results would be important for its extension to a wider range of reactions and for designer technologies involving hydrogen.

13.
Nat Commun ; 15(1): 3029, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589456

RESUMEN

The discovery of various primary ferroic phases in atomically-thin van der Waals crystals have created a new two-dimensional wonderland for exploring and manipulating exotic quantum phases. It may also bring technical breakthroughs in device applications, as evident by prototypical functionalities of giant tunneling magnetoresistance, gate-tunable ferromagnetism and non-volatile ferroelectric memory etc. However, two-dimensional multiferroics with effective magnetoelectric coupling, which ultimately decides the future of multiferroic-based information technology, has not been realized yet. Here, we show that an unconventional magnetoelectric coupling mechanism interlocked with heterogeneous ferrielectric transitions emerges at the two-dimensional limit in van der Waals multiferroic CuCrP2S6 with inherent antiferromagnetism and antiferroelectricity. Distinct from the homogeneous antiferroelectric bulk, thin-layer CuCrP2S6 under external electric field makes layer-dependent heterogeneous ferrielectric transitions, minimizing the depolarization effect introduced by the rearrangements of Cu+ ions within the ferromagnetic van der Waals cages of CrS6 and P2S6 octahedrons. The resulting ferrielectric phases are characterized by substantially reduced interlayer magnetic coupling energy of nearly 50% with a moderate electric field of 0.3 V nm-1, producing widely-tunable magnetoelectric coupling which can be further engineered by asymmetrical electrode work functions.

14.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174652

RESUMEN

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

15.
J Colloid Interface Sci ; 637: 251-261, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36706721

RESUMEN

Owing to price-boom and low-reserve of Lithium ion batteries (LIBs), cost-cutting and well-stocked sodium ion batteries (SIBs) attract a lot of attention, aiming to develop an effective energy storage and conversion equipment. As a typical anode for SIBs, Iron sulfide (FeS) is difficult to maintain the high theoretical capacity. Structural instability and inherent low conductivity limit the cyclic and rate performance of FeS. Herein, hierarchical architecture of FeS-FeSe2 coated with nitrogen-doped carbon (NC) is obtained by single-step solvothermal method and two-stage high-temperature treatments. Specifically, lattice imperfections provided by heterogeneous interfaces increase the Na+ storage sites and fasten ion/electron transfer. Synergistic effect induced by the hierarchical architecture effectively enhances the electrochemical activity and reduces the resistance, which contributes to the transfer kinetics of Na+. In addition, the phenomenon that heterogeneous interfaces provide more active site and extra migration Na+ path is also proved by density functional theory (DFT). As an anode for SIBs, FeS-FeSe2/NC (FSSe/C) delivers highly reversible capacity (704.5 mAh·g-1 after 120 cycles at 0.2 A·g-1), excellent rate performance (326.3 mAh·g-1 at 12 A·g-1) and long-lasting durability (492.3 mAh·g-1 after 1000 cycles at 4 A·g-1 with 100 % capacity retention). Notably, the full battery, assembled with FSSe/C and Na3V2(PO4)3/C (NVP/C), delivers reversible capacity of 252.1 mAh·g-1 after 300 cycles at 1 A·g-1. This work provides a facile method to construct a hierarchical architecture anode for high-performance SIBs.

16.
Science ; 380(6652): 1367-1372, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384701

RESUMEN

Rydberg excitons, the solid-state counterparts of Rydberg atoms, have sparked considerable interest with regard to the harnessing of their quantum application potentials, but realizing their spatial confinement and manipulation poses a major challenge. Lately, the rise of two-dimensional moiré superlattices with highly tunable periodic potentials provides a possible pathway. Here, we experimentally demonstrate this capability through the spectroscopic evidence of Rydberg moiré excitons (XRM), which are moiré-trapped Rydberg excitons in monolayer semiconductor tungsten diselenide adjacent to twisted bilayer graphene. In the strong coupling regime, the XRM manifest as multiple energy splittings, pronounced red shift, and narrowed linewidth in the reflectance spectra, highlighting their charge-transfer character wherein electron-hole separation is enforced by strongly asymmetric interlayer Coulomb interactions. Our findings establish the excitonic Rydberg states as candidates for exploitation in quantum technologies.

17.
Phys Rev Lett ; 109(15): 156601, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102347

RESUMEN

Resonant scatterers such as hydrogen adatoms can strongly enhance the low-energy density of states in graphene. Here, we study the impact of these impurities on electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function ε upon creation of midgap states but no metallic divergence of the static ε at small momentum transfer q→0. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale l(c) beyond which screening is suppressed emerges, which we identify with the Anderson localization length.

18.
Front Psychol ; 13: 972543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438329

RESUMEN

E-commerce in agri-business enterprises is a potent force in eradicating rural poverty in China. However, it has not reached its potential as many of the agri-business enterprises in rural areas are slow in re-thinking their distribution channel and implementing e-commerce. This study utilizes the multidimensionality of the Tornatsky and Fleisher Technology-Organization-Environment (TOE) framework to provide insights into why rural agri-business enterprises are not adopting e-commerce strategies. Specifically, it examines the moderating role of entrepreneurial orientation (EO) on the relationship between the sub-variables in the three contexts and e-commerce adoption. Empirical data from 192 micro agri-business enterprises were analyzed using PLS-SEM. The results show that relative advantage, organization readiness, competitive pressure, and government support have a direct positive impact on e-commerce adoption except for cost. The results also show that EO does not have a significant role in moderating the variables in the organizational context and environmental context. EO only moderated the relationship between relative advantage in the technology context and e-commerce adoption. This study advances research on e-commerce adoption by highlighting the importance of the owners' EO as a moderator between TOE factors and e-commerce adoption. It suggests that entrepreneurship must be pursued vigorously among agribusiness owners in rural China to enhance the adoption of e-commerce.

19.
Front Psychol ; 13: 928331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092055

RESUMEN

Daka destinations refer to tagging one's visit to a popular destination by posting on social media. As a novel tourism concept derived from digital media in the post-pandemic era, Daka destinations have become a major option for potential tourists; thus, investigating tourist intentions toward them is of utmost significance to tourism recovery. Based on the viewpoints of information sources of Daka destinations, tourism motivations, and self-construction, this study investigates the research framework of potential tourism intentions through three scenarios. The findings revealed the following: (i) Different information sources have different stimuli for potential tourists, and WeChat Moments exerted a positive impact on tourism intention because of credibility; tourism bloggers from Weibo exert a more significant positive impact on tourism intentions of potential tourists because of professionalism. (ii) Considering the credibility of WeChat Moments, the extrinsic motivation of potential tourists exerted a more significant impact on tourism intentions; regarding professional tourism bloggers, the intrinsic motivation of potential tourists exerted a more significant impact on tourism intention. (iii) Regarding the credibility of WeChat Moments, dependent self-construction potential tourists with extrinsic motivation exerted a more significant impact on tourism intention. Regarding tourism bloggers with high professionalism, independent self-construal potential tourists with intrinsic motivation exerted a more significant impact on tourism intention. This study enriches the research mechanism of the formation path of potential tourists' tourism intention, extends the self-construction theory to the research field of using social media to collect Daka destinations tourism information, and provides a reference to subsequent research on potential tourists' tourism intention.

20.
Natl Sci Rev ; 9(6): nwab135, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35795458

RESUMEN

Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at ∼1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental photoluminescence spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation approach indicates that both the electron and hole of the excitons are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the so-called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insight into the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA