Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(10): 6342-6349, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38415792

RESUMEN

BACKGROUND: Dioscorea opposita Thunb. cv. Tiegun maturity (DM) is an important factor influencing its quality. However, there are few studies on the impact of harvest time on its maturation. In the present study, a NMR-based metabolomics approach was applied to investigate the dynamic metabolic changes of D. opposita Thunb. cv. Tiegun at six different harvest stages: stage 1 (S1), stage 2 (S2), Stage 3 (S3), stage 4 (S4), stage 5 (S5) and stage 6 (S6). RESULTS: Principal component analysis showed distinct segregation of samples obtained from S1, S2 and S3 compared to those derived from S4, S5 and S6. Interestingly, these samples from the two periods were obtained before and after frost, indicating that frost descent might be important for DM. Eight differential metabolites responsible for good separation of different groups were identified by the principal component analysis loading plot and partial least squares-discriminant analysis. In addition, quantitative analysis of these metabolites using liquid chromatography-tandem mass spectrometry determined the effects of harvest time on these metabolite contents, two of which, sucrose and allantoin, were considered as potential biomarkers to determine DM. CONCLUSION: The present study demonstrated that NMR-based metabolomics approach could serve as a powerful tool to identify differential metabolites during harvesting processes, also offering a fresh insight into understanding the DM and the potential mechanism of quality formation. © 2024 Society of Chemical Industry.


Asunto(s)
Dioscorea , Espectroscopía de Resonancia Magnética , Metabolómica , Espectrometría de Masas en Tándem , Dioscorea/química , Dioscorea/metabolismo , Dioscorea/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética/métodos , Frutas/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Alantoína/metabolismo , Alantoína/análisis , Factores de Tiempo , Sacarosa/metabolismo , Sacarosa/análisis , Cromatografía Liquida/métodos , Análisis de Componente Principal , Cromatografía Líquida de Alta Presión , Cromatografía Líquida con Espectrometría de Masas
2.
Cell Physiol Biochem ; 51(6): 2509-2522, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30557872

RESUMEN

BACKGROUND/AIMS: Drug resistance remains a main obstacle to the treatment of non- small cell lung cancer (NSCLC). The aim of this study was to identify the expression profiles of microRNAs (miRNAs) in drug-resistant NSCLC cell lines. METHODS: The expression profiles of miRNAs in drug-resistant NSCLC cell lines were examined using miRNA sequencing, and the common dysregulated miRNAs in these cell lines were identified and analyzed by bioinformatics methods. RESULTS: A total of 29 upregulated miRNAs and 36 downregulated miRNAs were found in the drug-resistant NSCLC cell lines, of which 26 upregulated and 36 downregulated miRNAs were found to be involved in the Ras signaling pathway. The expression levels, survival analysis, and receiver operating characteristic curve of the dysregulated miRNAs based on The Cancer Genome Atlas database for lung adenocarcinoma showed that hsa-mir-192, hsa-mir-1293, hsa-mir-194, hsa-mir-561, hsa-mir-205, hsa-mir-30a, and hsa-mir-30c were related to lung cancer, whereas only hsa-mir-1293 and hsa-mir-561 were not involved in drug resistance. CONCLUSION: The results of this study may provide novel biomarkers for drug resistance in NSCLC and potential therapies for overcoming drug resistance, and may also reveal the potential mechanisms underlying drug resistance in this disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Transcriptoma , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Gefitinib/farmacología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Transcriptoma/efectos de los fármacos
3.
Food Chem X ; 21: 101159, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38328697

RESUMEN

Dioscorea opposita Thumb. cv. Tiegun is commonly consumed as both food and traditional Chinese medicine, which has a history of more than two thousand years. Harvest time directly affects its quality, but few studies have focused on metabolic changes during the harvesting process. Here, a comprehensive metabolomics approach was performed to determine the metabolic profiles during six harvest stages. Thirty eight metabolites with significant differences were determined as crucial participants. Related metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylpropanoid biosynthesis, flavonoid biosynthesis and tryptophan metabolism were the most active pathways during harvest. The results revealed that temperature has a significant impact on quality formation, which suggested that Dioscorea opposita thumb. cv. Tiegun harvested after frost had higher potential value of traditional Chinese medicine. This finding not only offered valuable guidance for yam production, but also provided essential information for assessing its quality.

4.
Front Immunol ; 14: 1125246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776881

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic named coronavirus disease 2019 (COVID-19) that has become the greatest worldwide public health threat of this century. Recent studies have unraveled numerous mysteries of SARS-CoV-2 pathogenesis and thus largely improved the studies of COVID-19 vaccines and therapeutic strategies. However, important questions remain regarding its therapy. In this review, the recent research advances on COVID-19 mechanism are quickly summarized. We mainly discuss current therapy strategies for COVID-19, with an emphasis on antiviral agents, neutralizing antibody therapies, Janus kinase inhibitors, and steroids. When necessary, specific mechanisms and the history of therapy are present, and representative strategies are described in detail. Finally, we discuss key outstanding questions regarding future directions of the development of COVID-19 treatment.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología
5.
Eur J Med Chem ; 247: 115036, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36571995

RESUMEN

The combination of incretin-based therapies and PYY analogue has shown great potential for the treatment of type 2 diabetes (T2DM) and obesity. In this study we developed the first example of a unimolecular triple agonist peptide to simultaneously target GLP-1, glucagon and Y2 receptors, aiming for superior weight loss and better glycemic control. The strategy for constructing such a unimolecular triple agonist peptide is the conjugation of the GLP-1R/GCGR dual-agonistic moiety and PYY moiety via maleimide-thiol specific reaction. A novel triple agonist peptide, 3b, was identified via stepwise structure optimization, long-acting modification and in vitro receptor screens. Peptide 3b exhibited potent and balanced GCGR and GLP-1R activities as well as potent and highly selective Y2R activity. Peptide 3b potently reduced food intake without triggering nausea associated behavior in kaolin consumption and conditioned taste aversion assays. In diet induced obesity (DIO) mice, a lower dose of 3b achieved significantly better effects on lipid metabolism, body weight, and glycemic control than higher dose of GLP-1R mono-agonist, GLP-1R/GCGR dual agonist and GLP-1R/Y2R dual agonist counterparts. Collectively, these data support the therapeutic potential of our GLP-1R/GCGR/Y2R triple agonist 3b as a novel anti-obesity and anti-diabetic agent. Targeting GLP-1R, GCGR and Y2R with unimolecular triple agonist peptide offers a route to develop new obesity and T2DM treatments.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Ratones , Animales , Glucagón/metabolismo , Glucagón/uso terapéutico , Péptido 1 Similar al Glucagón/agonistas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Xenopus laevis/metabolismo , Receptores de Glucagón/agonistas , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptidos/química , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico
6.
J Bionic Eng ; : 1-19, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37361682

RESUMEN

Nowadays, meta-heuristic algorithms are attracting widespread interest in solving high-dimensional nonlinear optimization problems. In this paper, a COVID-19 prevention-inspired bionic optimization algorithm, named Coronavirus Mask Protection Algorithm (CMPA), is proposed based on the virus transmission of COVID-19. The main inspiration for the CMPA originated from human self-protection behavior against COVID-19. In CMPA, the process of infection and immunity consists of three phases, including the infection stage, diffusion stage, and immune stage. Notably, wearing masks correctly and safe social distancing are two essential factors for humans to protect themselves, which are similar to the exploration and exploitation in optimization algorithms. This study simulates the self-protection behavior mathematically and offers an optimization algorithm. The performance of the proposed CMPA is evaluated and compared to other state-of-the-art metaheuristic optimizers using benchmark functions, CEC2020 suite problems, and three truss design problems. The statistical results demonstrate that the CMPA is more competitive among these state-of-the-art algorithms. Further, the CMPA is performed to identify the parameters of the main girder of a gantry crane. Results show that the mass and deflection of the main girder can be improved by 16.44% and 7.49%, respectively.

7.
Planta Med ; 78(6): 589-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22322394

RESUMEN

Three new ENT-kaurane diterpenoids, glaucocalyxin H ( 1), glaucocalyxin I ( 2), and glaucocalyxin J ( 3), together with four known diterpenoids ( 4- 7), were isolated from the leaves of Isodon japonica Hara var. glaucocalyx. Their structures were elucidated by spectroscopic analysis, and the structures of compounds 2 and 3 were further confirmed by X-ray crystallographic analysis. Compounds 1, 4, and 5 were evaluated for their cytotoxicity IN VITRO against CE-1, U87, A-549, MCF-7, Hela, K-562, and HepG-2 human tumor cell lines. Compound 1 showed potent inhibitory activities against six tumor cell lines with IC (50) values ranging from 1.86-10.95 µM, and compounds 4 and 5 exhibited significant selective cytotoxicity on seven tumor cell lines.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Isodon/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Bioensayo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Estructura Molecular , Hojas de la Planta/química , Plantas Medicinales/química
8.
Front Pharmacol ; 13: 878135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571106

RESUMEN

N6-Methyladenosine (m6A) is the most prevalent mRNA modification in mammalian cells that is mainly catalyzed by the methyltransferase complex of methyltransferase-like 3 and methyltransferase-like 14 (METTL3-METTL14). Many lines of evidence suggest that METTL3 plays important roles in several diseases such as cancers and viral infection. In the present study, 1,042 natural products from commercially available sources were chosen to establish a screening library, and docking-based high-throughput screening was performed to discover potential METTL3 inhibitors. The selected compounds were then further validated by an in vitro methyltransferase inhibition assay in which m6A content was determined by LC-MS/MS. A cellular assay of the inhibition of m6A methylation was performed to determine the METTL3 inhibitory activity of the selected compound. CCK-8 assay was applied to evaluate the effects of the selected compound on tumor cell viability. Additionally, binding mode analysis, molecular dynamics (MD) simulation, and binding free energy analysis were performed to study the process and characteristics of inhibitor binding. Finally, quercetin was identified as a METTL3 inhibitor with an IC50 value of 2.73 µM. The cellular assay of m6A methylation inhibition showed that quercetin decreased m6A level in a dose-dependent manner in MIA PaCa-2 pancreatic cancer cells. CCK-8 assay showed quercetin efficiently inhibited the proliferation of MIA PaCa-2 and Huh7 tumor cells, with IC50 values 73.51 ± 11.22 µM and 99.97 ± 7.03 µM, respectively. Molecular docking studies revealed that quercetin filled the pocket of the adenosine moiety of SAM but not the pocket of the SAM methionine in the METTL3 protein, and hydrogen bonds, hydrophobic interactions, and pi-stacking were formed. The values of the root mean square deviation (RMSD), the root mean square fluctuations (RMSF), and binding free energy suggested that quercetin can efficiently bind to the pocket of the METTL3 protein and form a stable protein-ligand complex. The present study is the first to identify METTL3 inhibitors from natural products, thus providing a basis for subsequent research and facilitating the development of METTL3-targeting drugs for diseases.

9.
Eur J Med Chem ; 233: 114214, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35231829

RESUMEN

The combined use of gastrointestinal hormones for treating metabolic diseases is gaining increasing attention. It was documented previously that co-administration of a cholecystokinin receptor-1 receptor (CCK-1R) agonist with a glucagon-like peptide-1 receptor (GLP-1R) agonist exerted improved effects on metabolic improvements in obese rodents. Here, we reported a series of novel GLP-1R/CCK-1R co-agonists constructed by linking the C-terminus of a GLP-1R agonist (native GLP-1 or Xenopus GLP-1) to the N-terminus of a CCK-1R selective agonist NN9056. The stability of co-agonists was further enhanced by introducing an albumin binding motif. In vitro functional assays revealed that the co-agonists retained full agonism potency on GLP-1R and CCK-1R. Particularly, 2a and 2c showed higher hypoglycemic and insulinotropic activities than NN9056 and semaglutide. The glucose-lowering durations and PK profiles of 2a and 2c were comparable to those of semaglutide. Desirably, in diet induced obesity (DIO) mice, 2a and 2c exhibited superior metabolic benefits to NN9056 and semaglutide in reducing food intake, inducing body weight loss, and regulating lipid metabolism. In short- and long-term studies in diabetic db/db mice, 2a and 2c showed enhanced effects on HbA1c, glucose tolerance, and pancreas function restoration compared with semaglutide. Importantly, no side effects, toxicities, or pancreatic inflammation were caused by 2a and 2c treatments. These preclinical studies suggest that the pharmacological effects of CCK-1 and GLP-1 pathways can be harnessed in a single fusion peptide, yielding a promising combination therapy strategy for treating metabolic disorders.


Asunto(s)
Péptido 1 Similar al Glucagón , Pérdida de Peso , Animales , Colecistoquinina , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones , Péptidos/farmacología , Receptores de Colecistoquinina
10.
Br J Pharmacol ; 179(17): 4360-4377, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35484823

RESUMEN

BACKGROUND AND PURPOSE: Glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor dual agonist have promising therapeutic effects in the treatment of obesity and diabetes. Moreover, GLP-1 and cholecystokinin 2 (CCK2 ) dual agonists have been shown to restore pancreas function and improve glycaemic control in preclinical studies. We describe, for the first time, the beneficial effects of GLP-1/glucagon receptor and GLP-1/CCK2 dual agonists, which can be integrated into one peptide, resulting in significant anti-diabetes and anti-obesity effectiveness. EXPERIMENTAL APPROACH: The in vitro potency of this novel peptide Xenopus (x) GLP-1/GCG/CCK2 tri-agonist (xGLP/GCG/gastrin) against GLP-1, GCG, CCK1 and CCK2 receptors was determined on cells expressing the corresponding receptors by cAMP accumulation or ERK1/2 phosphorylation assays. The in vivo anti-diabetes and anti-obesity effects of this tri-agonist xGLP/GCG/gastrin were studied in both db/db and diet induced obesity (DIO) mice. KEY RESULTS: xGLP/GCG/gastrin was a potent and selective GLP-1, GCG and CCK2 tri-agonist. In DIO mice, the metabolic benefits of xGLP-1/GCG/gastrin, such as reduction of body weight and hepatic lipid contents were significantly better than those of the peptide ZP3022 (GLP-1/CCK-2 dual agonist) and liraglutide. In a short-term study in db/db mice, xGLP/GCG/gastrin treatment had considerable effects, increasing islet numbers, islet areas and insulin content. In a long-term treatment study using db/db mice, xGLP-1/GCG/gastrin showed a significantly and sustained improvement in glucose tolerance and glucose control compared with that of liraglutide, ZP3022, cotadutide (GLP-1/GCG dual agonist) and xGLP/GCG-15. CONCLUSIONS AND IMPLICATIONS: These results demonstrate the therapeutic potential of xGLP-1/GCG/gastrin for the treatment of obesity and diabetes.


Asunto(s)
Diabetes Mellitus , Glucagón , Animales , Colecistoquinina , Diabetes Mellitus/tratamiento farmacológico , Gastrinas/agonistas , Gastrinas/uso terapéutico , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Liraglutida/farmacología , Liraglutida/uso terapéutico , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptidos/farmacología , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Receptores de Glucagón/uso terapéutico
11.
Int J Surg ; 107: 106960, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36257585

RESUMEN

BACKGROUND: Currently, there are insufficient indicators for the reliable assessment of treatment response following neoadjuvant chemoradiotherapy (nCRT) in patients with esophageal squamous cell carcinoma (ESCC). Considering the essential role of protein-coding and non-coding RNAs in gene regulation and cellular processes, we systematically explored the molecular features and clinical significance of mRNA and lncRNA in 249 pretreatment biopsies from four hospitals in three districts with a high incidence of ESCC patients in China. METHODS: During the discovery phrase, 13 differentially expressed genes were identified and validated between samples with a complete pathological response (pCR) and those with an incomplete pathological response (

Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/terapia , Terapia Neoadyuvante , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Antígeno B7-H1 , Linfocitos T CD8-positivos/patología , Carcinoma de Células Escamosas/patología , Pronóstico , ARN Mensajero , Quimioradioterapia , Microambiente Tumoral/genética
12.
J Med Chem ; 65(20): 14201-14220, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36214844

RESUMEN

GLP-1 receptor (GLP-1R) and neuropeptide Y2 receptor (Y2R) dual agonists have shown great potential to treat obesity and type 2 diabetes (T2DM). We developed a multitarget strategy to design monomeric agonists based on Xenopus GLP-1 (xGLP-1) and PYY3-36 analogues with dual activation activities on GLP-1R and Y2R. A novel peptide, 6q, was obtained via stepwise structure optimization and in vitro receptor screens. In db/db and diet-induced obesity (DIO) mice, 6q produced greater effects on long-term glycemic control and body weight reduction than GLP-1R and Y2R monoagonist counterparts. Notably, in high-fat diet-induced nonalcoholic steatohepatitis (NASH) mice, 6q treatment significantly reduced hepatic triglyceride and total cholesterol levels and reversed hepatic steatosis compared with GLP-1R monoagonist (liraglutide) treatment. Collectively, these data support the therapeutic potential of our GLP-1R/Y2R dual agonist 6q as a novel antidiabetic, antiobesity, and antisteatotic agent.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Liraglutida/uso terapéutico , Xenopus laevis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropéptido Y , Hipoglucemiantes/química , Obesidad/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Triglicéridos , Colesterol
13.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): o3355, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22199849

RESUMEN

In the title compound, C(46)H(80)O(3), a natural ursane-type triperpenoid, four of the five six-membered rings adopt chair conformations; the fifth, which has a C=C double bond, adopts an approximate half-boat conformation. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, forming chains along [010].

14.
Int Immunopharmacol ; 88: 106894, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32858440

RESUMEN

BACKGROUND: Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen superfamily, has been described to augment immunosuppression in gliomas. However, the precise clinical molecular features and the prognostic relevance of FGL2 in gliomas remain unclear. Therefore, a comprehensive analysis of the role of FGL2 in gliomas would provide insights into the therapeutic implications for this disease. METHODS: Totally, 1323 glioma samples with RNA-seq and microarray data from TCGA and CGGA databases were used to clarify the clinical significance and molecular profile of FGL2 in glioma. The findings were further validated through immunohistochemistry (IHC). RESULTS: The transcriptional level of FGL2 was positively associated with tumor grade in gliomas, which was confirmed at the protein level through IHC staining. Consistently, FGL2 was significantly enriched in isocitrate dehydrogenase wild-type tumors and the mesenchymal subtype of gliomas. We also demonstrated FGL2 expression correlated with high immune scores and infiltration of immune cell populations, including T cells, macrophages and B cells. Pearson's correlation analysis revealed that FGL2-related genes correlated with inflammatory-immune responses, particularly T cell-mediated immune response. Additionally, FGL2 expression was found tightly associated with immune checkpoints PD-L1 and PD-L2. Clinically, patients with high FGL2 expression exhibited unfavorable overall survival. CONCLUSION: Our results provide the integrative molecular and clinical profiles of FGL2 in gliomas and emphasize the importance of prospective studies on the FGL2-related immune-inflammatory network.


Asunto(s)
Biomarcadores de Tumor/inmunología , Neoplasias Encefálicas/inmunología , Fibrinógeno/inmunología , Glioma/inmunología , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Leucocitos/inmunología , Macrófagos/inmunología , Clasificación del Tumor
15.
Chin Med ; 15: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32071612

RESUMEN

BACKGROUND: Quality evaluation of multi-species resourced herb medicine (MSRHM) is a main problem for quality control of herb medicine. Current quality evaluation methodology lost consideration of species discrepancy. New quality evaluation strategy for MSRHM is in urgent need. Qinjiao, a representative MSRHM, originated from Gentiana macrophylla Pall., Gentiana straminea Maxim., Gentiana crassicaulis Duthie ex Burk. or Gentiana dahurica Fisch., has been used as an important herb medicine over 2000 years for expelling wind-dampness and relieving impediment pain. However, quality evaluation among species has never been revealed. The current work proposes an integrated quality evaluation strategy for MSRHM of Qinjiao, which may promote innovation of quality control of MSRHM. METHODS: In this work, 58 batches of Qinjiao covering 4 species were collected. Genetic comparative analysis based on ITS2 sequence was conducted. Metabolomics analysis based on TOF-MS and NMR spectrum were carried out. Compounds underlying species differences were identified and their discrepancies among species were investigated by ANOVA analysis and multivariate analysis. RESULTS: Four species of Qinjiao can be authenticated by ITS2 sequence comparation. Metabolomics analysis by TOF/MS and NMR revealed chemical discrepancies among species of Qinjiao. Maximum discrepancy was present between Gentiana crassicaulis Duthie ex Burk. and Gentiana dahurica Fisch. Chemical difference among species were tentative explored. For TOF-MS profiling, 28 constituents were tentative identified, 17 of which were further confirmed by standards. For 1H-NMR profiling, signals from 5 compounds were assigned. Contents discrepancies were investigated by ANOVA analysis. It seems that (seco)iridoids like loganic acid, gentiopicroside or swertiamarin were richer in specie of Gentiana crassicaulis Duthie ex Burk., while flavonoid (morroniside) and triterpenoids (roburic aicd, ursolic acid, oleanolic acid, ß-sitosterone) were richer in specie of Gentiana dahurica Fisch. The current research demonstrates that metabolite profiling based on both UPLC/Q-TOF MS and 1H-NMR coupled with ITS2 sequence comparation can be a powerful tool for quality investigation of MSRHM of Qinjiao. CONCLUSIONS: A comprehensive quality evaluation strategy for MSRHM was proposed by integrating UPLC-Q-TOF-MS, NMR based metabolic analysis and ITS2 sequence genetic comparation. The proposed quality evaluation strategy shall promote innovation of quality control of traditional Chinese medicine.

16.
J Cancer ; 11(11): 3357-3368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231742

RESUMEN

Background: Drug resistance to chemotherapeutic drugs or targeted medicines is an obstacle encountered in the treatment of non-small-cell lung cancer (NSCLC). However, the mechanisms of competing endogenous RNA (ceRNA) on the drug resistance in NSCLC are rarely reported. In this paper, the comprehensive expression profiles of lncRNAs and mRNAs in drug-resistant NSCLC cells were obtained by RNA sequencing. Methods: The dysregulated lncRNAs, miRNAs and mRNAs in drug-resistant NSCLC cell lines were identified by RNA-sequencing and bioinformatics methods. Results: A total of 39 dysregulated lncRNAs and 650 dysregulated mRNAs were identified between drug-resistant NSCLC cell lines and their parental cell lines. Additionally, 33 lncRNA-miRNA-mRNA pathways in the ceRNA network in drug-resistant NSCLC were constructed through bioinformatics methods and ceRNA regulatory rules. These comprised 12 dysregulated lncRNAs, five dysregulated miRNAs, and eight dysregulated mRNAs. In addition, lncRNA ATP2B1/miR-222-5p/TAB2 and lncRNA HUWE1/miR-222-5p/TAB2 were identified as potential ceRNA networks involved in drug resistance to NSCLC. Conclusions: The current study provides a promising therapeutic strategy against the lncRNA-miRNA-mRNA ceRNA regulatory network for NSCLC treatment and deepens our comprehension of the ceRNA regulatory mechanisms related to drug resistance to NSCLC.

17.
J Cancer ; 11(13): 3944-3954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328198

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most fatal diseases worldwide. Because early diagnosis is difficult, ESCC is mostly diagnosed at an advanced stage, leading to a poor overall prognosis. The purpose of this study was to explore the differences between plasma metabolic profiles in ESCC patients and healthy controls and to establish a diagnostic model of ESCC. Methods: In this study, a cohort of 310 subjects, containing 140 ESCC patients and 170 healthy controls (HC), was recruited. Participants were randomly separated into a training set (80 ESCCs, 80 HCs) and a validation set (60 ESCCs, 90 HCs) and their plasma metabolomics profiles were analyzed by ultra-performance liquid chromatography-tandem quadruple time-of-flight mass spectrometry (UPLC-QTOF/MS) technique. Univariate statistical analysis and multivariate analysis (MVA) methods were used to identify differential metabolites. Finally, the dysregulated pathways associated with ESCC were further explored and the diagnostic performance of the biomarker panel was evaluated. Results: Metabolic analyses identified 34 significant metabolites involved in the metabolism of amino acids, phospholipids, fatty acids, purine, and choline. Farthermore, an effective diagnostic model for ESCC was constructed based on eight metabolites. This panel of biomarkers consisted of hypoxanthine, proline betaine, indoleacrylic acid, inosine, 9-decenoylcarnitine, tetracosahexaenoic acid, LPE (20:4), and LPC (20:5). The model was verified and evaluated in the validation set. The AUC value of the ROC curve was 0.991(95% CI: 0.981-1.000, CI, Confidence interval), with a sensitivity (SE) of 98.8% and a specificity (SP) of 94.9% for the training set and 0.965(95% CI: 0.936-0.993), with a SE of 88.3% and a SP of 88.9% for the validation set. Among them, three biomarkers, indoleacrylic acid, LPC (20:5), and LPE (20:4), exhibited a trend associated with the ESCC progression. Conclusions: Our study identified a novel plasma biomarker panel, which clearly distinguishes ESCC patients and provides insight into the mechanisms of ESCC. This finding may form the basis for the development of a minimally invasive method for ESCC detection.

18.
Signal Transduct Target Ther ; 5(1): 54, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32439898

RESUMEN

Hypoxia mediates a metabolic switch from oxidative phosphorylation to glycolysis and increases glycogen synthesis. We previously found that glycogen branching enzyme (GBE1) is downstream of the hypoxia-inducible factor-1 (HIF1) signaling pathway in lung adenocarcinoma (LUAD) cells; however, the molecular mechanism underlying HIF1 regulation of GBE1 expression remains unknown. Herein, the effect of GBE1 on tumor progression via changes in metabolic signaling under hypoxia in vitro and in vivo was evaluated, and GBE1-related genes from human specimens and data sets were analyzed. Hypoxia induced GBE1 upregulation in LUAD cells. GBE1-knockdown A549 cells showed impaired cell proliferation, clone formation, cell migration and invasion, angiogenesis, tumor growth, and metastasis. GBE1 mediated the metabolic reprogramming of LUAD cells. The expression of gluconeogenesis pathway molecules, especially fructose-1,6-bisphosphatase (FBP1), was markedly higher in shGBE1 A549 cells than it was in the control cells. FBP1 inhibited the tumor progression of LUAD. GBE1-mediated FBP1 suppression via promoter methylation enhanced HIF1α levels through NF-κB signaling. GBE1 may be a negative prognostic biomarker for LUAD patients. Altogether, hypoxia-induced HIF1α mediated GBE1 upregulation, suppressing FBP1 expression by promoter methylation via NF-κB signaling in LUAD cells. FBP1 blockade upregulated HIF1α, triggered the switch to anaerobic glycolysis, and enhanced glucose uptake. Therefore, targeting HIF1α/GBE1/NF-κB/FBP1 signaling may be a potential therapeutic strategy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/enzimología , Reprogramación Celular , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Sistema de la Enzima Desramificadora del Glucógeno/biosíntesis , Neoplasias Pulmonares/enzimología , Proteínas de Neoplasias/biosíntesis , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Hipoxia de la Célula/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética
19.
Drug Test Anal ; 11(1): 129-139, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30102849

RESUMEN

Evobrutinib is a highly selective inhibitor of Bruton's tyrosine kinase (BTK) which may be clinically effective in treating certain autoimmune diseases. The purpose of the present study was to investigate the metabolism of evobrutinib in rat and human hepatocytes. Evobrutinib was incubated with rat and human hepatocytes at 37°C for 2 hours after which the samples were analyzed by ultra-high performance liquid chromatography with diode array detection and Q Exactive Orbitrap tandem mass spectrometry (UPLC-DAD-Q Exactive Orbitrap-MS). The acquired data were processed by MetWorks™ software using mass effect filter and background subtraction functions. Under these conditions, 23 metabolites were detected and their identities proposed. Among these metabolites, M13 and M15 were identified by comparison of their retention times, accurate masses, and fragment ions with those of authentic reference standards. The metabolic pathways of evobrutinib were proposed accordingly. Our results demonstrated that evobrutinib was metabolized via hydroxylation, hydrolysis, O-dealkylation, glucuronidation, and GSH conjugation. Species-related metabolic differences between rat and human hepatocytes were observed. M1-M4 were rat-specific metabolites. M13 (hydroxyl-evobrutinib) was the major metabolite whereas M15 (evobrutinib-diol) was a minor metabolite in rat hepatocytes. On the other hand, M6, M11, M16, M17, and M19 were human-specific metabolites. M15 was the most abundant metabolite whereas M13 was the minor metabolite in human hepatocytes. This study provides preliminary information regarding the metabolism of evobrutinib that may be helpful in understanding the pharmacology of evobrutinib.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Hepatocitos/metabolismo , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/normas , Humanos , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Espectrometría de Masas en Tándem/normas
20.
Eur J Med Chem ; 182: 111615, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31434038

RESUMEN

Multi-drug resistant infections caused by Gram-negative bacteria have become one of the most important reasons for the failure of clinical anti-infective treatment. Siderophore-antibiotic conjugates, which were designed based on a "Trojan horse" strategy wherein features enabled active uptake to bypass the Gram-negative cell wall, have been expected to be a weapon for anti-infective treatment in the clinic. Herein, we review antibiotic drug design strategies based on mimics of nature siderophores reported in recent years, we also focus our attention on the relationship between the type of linker and the corresponding antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Sideróforos/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Sideróforos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA