Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(49): e2216240119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442086

RESUMEN

Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.


Asunto(s)
Antígenos Virales de Tumores , ADN Helicasas , Animales , Conejos , Antígenos Virales de Tumores/genética , ADN de Cadena Simple/genética , Replicación del ADN , Eucariontes
2.
Nature ; 562(7727): 444-447, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283140

RESUMEN

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/ultraestructura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669428

RESUMEN

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Replicación del ADN , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Componente 6 del Complejo de Mantenimiento de Minicromosoma/química , Componente 6 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejo de Reconocimiento del Origen , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
4.
Genes Dev ; 28(20): 2291-303, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319829

RESUMEN

Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfato/metabolismo , Sitios de Unión , Activación Enzimática , Hidrólisis , Microscopía Electrónica , Proteínas de Mantenimiento de Minicromosoma/aislamiento & purificación , Conformación Molecular , Unión Proteica
5.
Biochem J ; 477(18): 3499-3525, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32970141

RESUMEN

Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.


Asunto(s)
Replicación del ADN/fisiología , ADN/biosíntesis , Epigénesis Genética/fisiología , Células Eucariotas/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , ADN Polimerasa II/metabolismo , ADN Polimerasa III/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(45): E9529-E9538, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078375

RESUMEN

During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.


Asunto(s)
ADN Helicasas/química , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Replicación del ADN/genética , Oligosacáridos/química , Dominios Proteicos/genética , Dedos de Zinc/genética
7.
Proc Natl Acad Sci U S A ; 114(5): E697-E706, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096349

RESUMEN

The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5'-3' through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Replicación del ADN , ADN de Cadena Simple/química , Modelos Moleculares , Conformación Proteica , Origen de Réplica
8.
Adv Exp Med Biol ; 1042: 207-228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357060

RESUMEN

Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína
9.
J Struct Biol ; 190(2): 122-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25791617

RESUMEN

CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)-mediated defense against invading nucleic acids is a process recently discovered in prokaryotes, which includes recognition and incorporation of invading genetic elements, transcription and processing of CRISPR-RNA (crRNA) and targeting the invaders through base pair recognition. In the type I-E CRISPR-Cas system, Cse2 is proposed to provide a platform to facilitate the targeting of the invading dsDNA by crRNA. Here we report the crystal structure of Meiothermus ruber Cse2 at 2.8Å. M. ruber Cse2 adopts an α-helical bundle scaffold, harbors a positive surface for nucleic acid binding and a conserved dimer interface with strikingly low buried surface area. M. ruber Cse2 selectively binds to G-rich crRNA sequence, which is stripped off from the Cse2-crRNA and Cascade-crRNA complexes by ssDNA or dsDNA with complementary sequence. Stable M. ruber Cascade is readily formed by co-expression of M. ruber Cascade proteins together with G-rich crRNA in vitro. Docking of M. ruber Cse2 structures into the Escherichia coli Cascade Cryo-EM envelope reveals a curved elongated shallow groove for ssRNA binding, which adopts a similar dimer interface discovered by high-resolution crystal structure of Cse2 within E. Coli Cascade. Taken together, our data provides the structural insights into crRNA G-rich sequence recognition by M. ruber Cse2 and reveals the potential structural mechanism for M. ruber Cascade assembly and function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas/genética , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Modelos Moleculares , ARN/metabolismo , Proteínas Bacterianas/genética , Northern Blotting , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Conformación Proteica , Ultracentrifugación
10.
Biochim Biophys Acta ; 1844(7): 1183-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24602769

RESUMEN

Because of the complex mechanisms of enzymatic reactions, no precise and simple method of understanding and controlling the chiral selectivity of enzymes has been developed. However, structure-based rational design is a powerful approach to engineering enzymes with desired catalytic activities. In this work, a simple, structure-based, large-scale in silico design and virtual screening strategy was developed and successfully applied to enzyme engineering. We first performed protein crystallization and X-ray diffraction to determine the structure of lipase LipK107, which is a novel family I.1 lipase displaying activity for both R and S isomers in chiral resolution reactions. The catalytic mechanism of family I.1, which includes LipK107, was ascertained first through comparisons of the sequences and structures of lipases from other families. The binding states of LipK107, including the energy and the conformation of complexes with the R and S enantiomers, have been evaluated by careful biocomputation to figure out the reason for the higher S selectivity. Based on this study, a simple strategy for manipulating the chiral selectivity by modulating a crucial distance in the enzyme-substrate complex and judging virtual mutations in silico is recommended. Then, a novel electrostatic interaction analysis protocol was used to design LipK107 mutants to validate our strategy. Both positive and negative mutations determined using this theoretical protocol have been implemented in wet experiments and were proved to produce the desired enantioselectivity, showing a 176% increase or 50% decrease in enantioselectivity as desired. Because of its accuracy and versatility, the strategy is promising for practical applications.


Asunto(s)
Lipasa/química , Lipasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cromatografía Líquida de Alta Presión , Simulación por Computador , Cristalografía por Rayos X , Lipasa/genética , Lipasa/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato , Difracción de Rayos X
11.
FEBS J ; 291(9): 1889-1891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581152

RESUMEN

Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.


Asunto(s)
ADN Polimerasa I , ADN , ARN , Humanos , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Cartilla de ADN/genética , Replicación del ADN , ARN/química , ARN/metabolismo , ARN/genética
12.
Science ; 385(6708): eadk5901, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088616

RESUMEN

The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.


Asunto(s)
Replicación del ADN , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa II/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , Dominios Proteicos
13.
J Struct Biol ; 182(2): 125-35, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23500184

RESUMEN

Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of aldehydes to carboxylic acids. Cyanobacterium Synechococcus contains one ALDH enzyme (Sp2771), together with a novel 2-oxoglutarate decarboxylase, to complete a non-canonical tricarboxylic acid cycle. However, the molecular mechanisms for substrate selection and cofactor preference by Sp2771 are largely unknown. Here, we report crystal structures of wild type Sp2771, Sp2771 S419A mutant and ternary structure of Sp2771 C262A mutant in complex with NADP(+) and SSA, as well as binary structure of Gluconobacter oxydans aldehyde dehydrogenase (Gox0499) in complex with PEG. Structural comparison of Sp2771 with Gox0499, coupled with mutational analysis, demonstrates that Ser157 residue in Sp2771 and corresponding Pro159 residue in Gox0499 play critical structural roles in determining NADP(+) and NAD(+) preference for Sp2771 and Gox0499, respectively, whereas size and distribution of hydrophobic residues along the substrate binding funnel determine substrate selection. Hence, our work has provided insightful structural information into cofactor and substrate selection by ALDH.


Asunto(s)
Ciclo del Ácido Cítrico , Coenzimas/química , Cianobacterias/enzimología , Modelos Moleculares , Conformación Proteica , Succionato-Semialdehído Deshidrogenasa/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Catálisis , Coenzimas/metabolismo , Cristalización , Cinética , Datos de Secuencia Molecular , Especificidad por Sustrato , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
14.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205351

RESUMEN

The eukaryotic polymerase α (Pol α) is a dual-function DNA polymerase/primase complex that synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides for DNA replication. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2, with Pol1 and Pri1 containing the DNA polymerase activity and RNA primase activity, respectively, whereas Pol12 and Pri2 serve a structural role. It has been unclear how Pol α hands over an RNA primer made by Pri1 to Pol1 for DNA primer extension, and how the primer length is defined, perhaps due to the difficulty in studying the highly mobile structure. Here we report a comprehensive cryo-EM analysis of the intact 4-subunit yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states in a 3.5 Å - 5.6 Å resolution range. We found that Pol α is a three-lobed flexible structure. Pri2 functions as a flexible hinge that holds together the catalytic Pol1-core, and the noncatalytic Pol1 CTD that binds to Pol 12 to form a stable platform upon which the other components are organized. In the apo state, Pol1-core is sequestered on the Pol12-Pol1-CTD platform, and Pri1 is mobile perhaps in search of a template. Upon binding a ssDNA template, a large conformation change is induced that enables Pri1 to perform RNA synthesis, and positions Pol1-core to accept the future RNA primed site 50 Å upstream of where Pri1 binds. We reveal in detail the critical point at which Pol1-core takes over the 3'-end of the RNA from Pri1. DNA primer extension appears limited by the spiral motion of Pol1-core while Pri2-CTD stably holds onto the 5' end of the RNA primer. Since both Pri1 and Pol1-core are attached via two linkers to the platform, primer growth will produce stress within this "two-point" attachment that may limit the length of the RNA-DNA hybrid primer. Hence, this study reveals the large and dynamic series of movements that Pol α undergoes to synthesize a primer for DNA replication.

15.
Nat Commun ; 14(1): 3697, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344454

RESUMEN

The eukaryotic polymerase α (Pol α) synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2. Pol1 and Pri1 contain the DNA polymerase and RNA primase activities, respectively. It has been unclear how Pol α hands over an RNA primer from Pri1 to Pol1 for DNA primer extension, and how the primer length is defined. Here we report the cryo-EM analysis of yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states, revealing a series of very large movements. We reveal a critical point at which Pol1-core moves to take over the 3'-end of the RNA from Pri1. DNA extension is limited by a spiral motion of Pol1-core. Since both Pri1 and Pol1-core are flexibly attached to a stable platform, primer growth produces stress that limits the primer length.


Asunto(s)
ADN Primasa , ADN Polimerasa Dirigida por ADN , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Replicación del ADN , ADN , ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cartilla de ADN
16.
Biochem Biophys Res Commun ; 415(2): 410-5, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22040731

RESUMEN

Gluconobacter oxydans enable to oxidize sugars and polyols incompletely to corresponding materials with potential industrial applications, containing around 75 putative dehydrogenases. One of these putative dehydrogenases, Gox2181, was cloned and expressed in Escherichia coli BL21 (DE3), and its X-ray crystal structure was determined to a resolution of 1.8 Å. Gox2181 formed a homo-tetramer in the crystal that was coincident with the apparent molecular mass determined in the solution. Gox2181 displayed α/ß-folding patterns, the conserved catalytic tetrad of Asn119-Ser147-Tyr162-Lys166, and the NAD-binding pocket, which aligned well with the 'classical' type of short-chain dehydrogenase/reductase (SDR) enzymes. Gox2181 was denoted SDR51C based on the SDR nomenclature system. The purified recombinant Gox2181 was demonstrated to be NAD(H)-dependent and active towards a wide range of substrates, including sugar alcohols, secondary alcohols, ketones, and ketoses. Among the substrates tested, Gox2181 displayed preference for secondary hydroxyl or carbonyl groups, showing low K(m) values with d-arabitol and butanedione.


Asunto(s)
Gluconobacter oxydans/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Catálisis , Cristalografía por Rayos X , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
17.
Nat Commun ; 12(1): 5207, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471127

RESUMEN

Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Escherichia coli Uropatógena/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Escherichia coli Uropatógena/genética
18.
Nat Commun ; 11(1): 3156, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572031

RESUMEN

The eukaryotic leading strand DNA polymerase (Pol) ε contains 4 subunits, Pol2, Dpb2, Dpb3 and Dpb4. Pol2 is a fusion of two B-family Pols; the N-terminal Pol module is catalytic and the C-terminal Pol module is non-catalytic. Despite extensive efforts, there is no atomic structure for Pol ε holoenzyme, critical to understanding how DNA synthesis is coordinated with unwinding and the DNA path through the CMG helicase-Pol ε-PCNA clamp. We show here a 3.5-Šcryo-EM structure of yeast Pol ε revealing that the Dpb3-Dpb4 subunits bridge the two DNA Pol modules of Pol2, holding them rigid. This information enabled an atomic model of the leading strand replisome. Interestingly, the model suggests that an OB fold in Dbp2 directs leading ssDNA from CMG to the Pol ε active site. These results complete the DNA path from entry of parental DNA into CMG to exit of daughter DNA from PCNA.


Asunto(s)
ADN Polimerasa II/química , Replicación del ADN , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Molecular , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nat Commun ; 11(1): 688, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019936

RESUMEN

High-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understanding the unwinding mechanism. The eukaryotic replicative CMG (Cdc45, Mcm2-7, GINS) helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the oligosaccharide/oligonucleotide-binding (OB) fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 Å, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a specific steric exclusion process, or even a separation pin, unwinding is achieved via a "dam-and-diversion tunnel" mechanism that does not require specific protein-DNA interaction. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation.


Asunto(s)
Replicación del ADN , Saccharomyces cerevisiae/enzimología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Componente 3 del Complejo de Mantenimiento de Minicromosoma/química , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 4 del Complejo de Mantenimiento de Minicromosoma/química , Componente 4 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 6 del Complejo de Mantenimiento de Minicromosoma/química , Componente 6 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 6 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/química , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Elife ; 82019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31589141

RESUMEN

The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG-Ctf43-1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.


Asunto(s)
ADN Polimerasa I/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA