Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 117(48): 30816-30823, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199630

RESUMEN

Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di-C-glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two C-glycosyltransferases (CGTs), i.e., CGTa for C-glucosylation of the 2-hydroxyflavanone aglycone and CGTb for C-arabinosylation of the mono-C-glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including Scutellaria baicalensis, Glycyrrhiza uralensis, Oryza sativa ssp. japonica, and Zea mays, and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.


Asunto(s)
Vías Biosintéticas , Glicósidos/biosíntesis , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Catálisis , Clonación Molecular , Activación Enzimática , Flavonoides/biosíntesis , Glicósidos/química , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Relación Estructura-Actividad
3.
Nature ; 534(7605): 129-32, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251290

RESUMEN

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Bencenoacetamidas/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab/farmacología , Modelos Animales de Enfermedad , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
4.
J Am Chem Soc ; 142(37): 16031-16038, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32803979

RESUMEN

Macrolactins (MLNs) are a class of important antimacular degeneration and antitumor agents. Malonylated/succinylated MLNs are even more important due to their efficacy in overcoming multi-drug-resistant bacteria. However, which enzyme catalyzes this reaction remains enigmatic. Herein, we deciphered a ß-lactamase homologue BmmI to be responsible for this step. BmmI could specifically attach C3-C5 alkyl acid thioesters onto 7-OH of MLN A and also exhibits substrate promiscuity toward acyl acceptors with different scaffolds. The crystal structure of BmmI covalently linked to the succinyl group and systematic mutagenesis highlighted the role of oxyanion holelike geometry in the recognition of carboxyl-terminated acyl donors. The engineering of this geometry expanded its substrate scope, with the R166A/G/Q variants recognizing up to C12 alkyl acid thioester. The structure of BmmI with acyl acceptor MLN A revealed the importance of Arg292 in the recognition of macrolide substrates. Moreover, the mechanism of the BmmI-catalyzed acyltransfer reaction was established, unmasking the deft role of Lys76 in governing acyl donors as well as catalysis. Our studies uncover the delicate mechanism underlying the substrate selectivity of acyltransferases, which would guide rational enzyme engineering for drug development.


Asunto(s)
Bacillus/enzimología , Macrólidos/metabolismo , beta-Lactamasas/metabolismo , Cristalografía por Rayos X , Macrólidos/química , Modelos Moleculares , Estructura Molecular , beta-Lactamasas/genética
5.
J Am Chem Soc ; 142(7): 3506-3512, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986016

RESUMEN

A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Glycyrrhiza/enzimología , Clonación Molecular , Cristalografía por Rayos X , Glicosilación , Glicosiltransferasas/genética , Glycyrrhiza/genética , Ligandos , Modelos Moleculares , Floretina/química , Floretina/metabolismo , Especificidad por Sustrato , Transcriptoma , Uridina Difosfato Galactosa/química , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Uridina Difosfato Xilosa/química , Uridina Difosfato Xilosa/metabolismo
6.
Nucleic Acids Res ; 46(2): 689-703, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29190394

RESUMEN

P53-binding protein 1 (53BP1) plays critical roles in DNA double strand break (DSB) repair by promoting non-homologous end joining (NHEJ), and loss of 53BP1 abolishes PARPi sensitivity in BRCA1-deficient cells by restoring homologous recombination (HR). 53BP1 is one of the proteins initially recruited to sites of DSBs via recognition of H4K20me2 through the Tudor-UDR domain and H2AK15ub through the UDR motif. Although extensive studies have been conducted, it remains unclear how the post-translational modification of 53BP1 affects DSB repair pathway choice. Here, we identified 53BP1 as an acetylated protein and determined that acetylation of 53BP1 inhibit NHEJ and promote HR by negatively regulating 53BP1 recruitment to DSBs. Mechanistically, CBP-mediated acetylation of K1626/1628 in the UDR motif disrupted the interaction between 53BP1 and nucleosomes, subsequently blocking the recruitment of 53BP1 and its downstream factors PTIP and RIF1 to DSBs. Hyperacetylation of 53BP1, similar to depletion of 53BP1, restored PARPi resistance in BRCA1-deficient cells. Interestingly, 53BP1 acetylation was tightly regulated by HDAC2 to maintain balance between the HR and NHEJ pathways. Together, our results demonstrate that the acetylation status of 53BP1 plays a key role in its recruitment to DSBs and reveal how specific 53BP1 modification modulates the choice of DNA repair pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Acetilación , Secuencia de Aminoácidos , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Dominio Tudor , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética
7.
Angew Chem Int Ed Engl ; 58(33): 11513-11520, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31163097

RESUMEN

Herein, the catalytic promiscuity of TcCGT1, a new C-glycosyltransferase (CGT) from the medicinal plant Trollius chinensis is explored. TcCGT1 could efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids and could also catalyze the O-glycosylation of diverse phenolics. The crystal structure of TcCGT1 in complex with uridine diphosphate was determined at 1.85 Šresolution. Molecular docking revealed a new model for the catalytic mechanism of TcCGT1, which is initiated by the spontaneous deprotonation of the substrate. The spacious binding pocket explains the substrate promiscuity, and the binding pose of the substrate determines C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) switched C- to O-glycosylation. TcCGT1 is the first plant CGT with a crystal structure and the first flavone 8-C-glycosyltransferase described. This provides a basis for designing efficient glycosylation biocatalysts.


Asunto(s)
Clonación Molecular , Glicosiltransferasas/metabolismo , Proteínas de Plantas/química , Ranunculaceae/enzimología , Dominio Catalítico , Glicosiltransferasas/genética , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformación Proteica
8.
Biochem Biophys Res Commun ; 503(4): 2912-2917, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30131249

RESUMEN

Some mutations of isocitrate dehydrogenase 1 and 2 observed in multiple kinds of malignant tumors can lead to a neomorphic enzyme activity that converts alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). As an oncometabolite, 2-HG can cause epigenetic changes and impair cell differentiation. Inhibiting the activity of isocitrate dehydrogenase mutants (mIDH) is considered to be an effective therapy for the treatment of mIDH positive cancers, including glioma and acute myeloid leukemia (AML). The presently disclosed allosteric inhibitors work only on one of the mIDH1 and mIDH2, and it is shown that mIDH1 and mIDH2 have different allosteric inhibition pockets. However, AG-881 from Agios Pharmaceuticals was found to be a pan-IDH inhibitor against both mIDH1 and mIDH2, and is undergoing Phase I clinical trials for tumors with an IDH1 and/or IDH2 mutation. To understand the binding mode of AG-881 to mIDHs, we solved the crystal structures of IDH1-R132H/NADPH/AG-881 and IDH2-R140Q/NADPH/AG-881 complexes, and acquired the IC50 values of AG-881 for IDH1-R132H and IDH2-R140Q homodimers after different pre-incubation times. Our data show that AG-881 binds IDH1-R132H and IDH2-R140Q in the same allosteric pockets and that the subtle difference in the pockets of these two proteins may contribute to their remarkably different inhibitory kinetics by AG-881. The structural pharmacological data provided in this report may benefit the future development of pan-IDH inhibitors targeting mIDH1 and mIDH2.


Asunto(s)
Inhibidores Enzimáticos/química , Isocitrato Deshidrogenasa/química , Proteínas Mutantes/química , Sitio Alostérico , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias/etiología , Neoplasias/genética , Unión Proteica , Conformación Proteica
9.
Biochem Biophys Res Commun ; 502(3): 332-337, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29802850

RESUMEN

Lung cancer is the leading cause of cancer deaths. Epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small cell lung cancers (NSCLCs), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the anti-EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib initially, but soon develop resistance to them in about half of the cases due to the emergence of the gatekeeper mutation T790M. The third-generation TKIs such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790M through covalent binding to the EGFR kinase through Cys 797, but ultimately lose their efficacy upon emergence of the C797S mutation that abolishes the covalent bonding. Therefore to develop new TKIs to overcome EGFR drug-resistant mutants harboring T790M/C797S is urgently demanded. EAI001 and EAI045 are a new type of EGFR TKIs that bind to EGFR reversibly and not relying on Cys 797. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR L858R/T790M and L858R/T790M/C797S. Here we report the crystal structure of EGFR T790M/C797S/V948R in complex with EAI045, and compare it to EGFR T790M/V948R in complex with EAI001. The complex structure reveals why EAI045 binds tighter to EGFR than does EAI001, and why EAI001 and EAI045 prefer binding to EGFR T790M. The knowledge may facilitate future drug development studies targeting this very important cancer target.


Asunto(s)
Bencenoacetamidas/química , Receptores ErbB/química , Receptores ErbB/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Inhibidores de Proteínas Quinasas/química , Tiazoles/química , Sustitución de Aminoácidos , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Bencenoacetamidas/administración & dosificación , Bencenoacetamidas/farmacología , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Cetuximab/administración & dosificación , Cristalografía por Rayos X , Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Mutación Missense , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tiazoles/administración & dosificación , Tiazoles/farmacología
10.
Biochem Biophys Res Commun ; 488(2): 266-272, 2017 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-28456628

RESUMEN

Drug-resistance is a major challenge in targeted therapy of EGFR mutated non-small cell lung cancers (NSCLCs). The third-generation irreversible inhibitors such as AZD9291, CO-1686 and WZ4002 can overcome EGFR T790M drug-resistance mutant through covalent binding through Cys 797, but ultimately lose their efficacy upon emergence of the new mutation C797S. To develop new reversible inhibitors not relying on covalent binding through Cys 797 is therefore urgently demanded. Gö6976 is a staurosporine-like reversible inhibitor targeting T790M while sparing the wild-type EGFR. In the present work, we reported the complex crystal structures of EGFR T790M/C797S + Gö6976 and T790M + Gö6976, along with enzyme kinetic data of EGFR wild-type, T790M and T790M/C797S. These data showed that the C797S mutation does not significantly alter the structure and function of the EGFR kinase, but increases the local hydrophilicity around residue 797. The complex crystal structures also elucidated the detailed binding mode of Gö6976 to EGFR and explained why this compound prefers binding to T790M mutant. These structural pharmacological data would facilitate future drug development studies.


Asunto(s)
Carbazoles/farmacología , Receptores ErbB/química , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Carbazoles/química , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
11.
Blood ; 126(7): 905-14, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26045608

RESUMEN

Thrombin is an effector enzyme for hemostasis and thrombosis; however, endogenous regulators of thrombin remain elusive. Cartilage oligomeric matrix protein (COMP), a matricellular protein also known as thrombospondin-5, is essential for maintaining vascular homeostasis. Here, we asked whether COMP is involved in the process of blood coagulation. COMP deficiency shortened tail-bleeding and clotting time and accelerated ferric-chloride-induced thrombosis in mice. The absence of COMP had no effect on platelet count. In contrast, COMP specifically inhibited thrombin-induced platelet aggregation, activation, and retraction and the thrombin-mediated cleavage of fibrinogen. Furthermore, surface plasmon resonance analysis revealed direct thrombin-COMP binding (KD = 1.38 ± 0.24 µM). In particular, blockage of thrombin exosites with compounds specific for exosite I (hirudin and HD1 aptamer) or exosite II (heparin and HD22 aptamer) impaired the COMP-thrombin interaction, indicating a 2-site binding mechanism. Additionally, epidermal growth factor-like repeats (amino acids 84-261) were identified as a COMP binding site for thrombin. Moreover, COMP was expressed in and secreted by platelets. Using bone marrow transplantation and platelet transfusion to create chimeric mice, platelet-derived but not vessel-wall-derived COMP was demonstrated to inhibit coagulation. Taken together, COMP is an endogenous thrombin inhibitor and negative regulator of hemostasis and thrombosis.


Asunto(s)
Antitrombinas/sangre , Proteína de la Matriz Oligomérica del Cartílago/sangre , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Animales , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Coagulación Sanguínea , Plaquetas/metabolismo , Traumatismos de las Arterias Carótidas/sangre , Proteína de la Matriz Oligomérica del Cartílago/deficiencia , Proteína de la Matriz Oligomérica del Cartílago/genética , Hemostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria , Unión Proteica , Quimera por Radiación/sangre , Resonancia por Plasmón de Superficie , Trombina/química , Trombosis/sangre
12.
Proc Natl Acad Sci U S A ; 111(45): E4869-77, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349422

RESUMEN

The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Sustitución de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Mutación Missense , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Relación Estructura-Actividad
13.
Biochem Biophys Res Commun ; 477(4): 667-672, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27349873

RESUMEN

Platelet-derived growth factor receptor α (PDGFRA) is a Type III receptor tyrosine kinase, and this kinase is a target for treatment of gastrointestinal stromal tumors (GIST) as it is frequently mutated in these cancers. Most of the mutations that cause constitutive activation of PDGFRA occur in either the activation loop (A-loop) or in the juxtamembrane (JM) domain, such as the mutations D842V or V561D respectively. Treatment of PDGFRA-mutated GIST with imatinib is successful in some cases, but the D842V mutation is imatinib-resistant. To better understand the mechanism of PDGFRA drug-resistance, we have determined the crystal structure of the PDGFRA kinase domain in the auto-inhibited form, and studied the kinetics of the D842V mutation. Auto-inhibited PDGFRA is stabilized by the JM domain, which inserts into the active site of the kinase. The conserved residue Asp842 makes extensive contacts with several A-loop residues to maintain PDGFRA in the "DFG out" conformation, which stabilizes the kinase in the inactive state and facilitates the binding of imatinib. The D842V mutation would therefore be expected to activate the kinase and hinder the binding of drug through destabilizing the "DFG out" conformation. Furthermore, our kinetic data show that drug resistance in the D842V mutation may also in part result from its increased affinity for ATP. The PDGFRA kinase domain structure we report in this study has potential to facilitate development of new agents which can inhibit this kinase, including both its activating and drug-resistant mutations.


Asunto(s)
Adenosina Trifosfato/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Especificidad por Sustrato
14.
Proc Natl Acad Sci U S A ; 110(38): E3595-604, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24019492

RESUMEN

The initiation of epidermal growth factor receptor (EGFR) kinase activity proceeds via an asymmetric dimerization mechanism in which a "donor" tyrosine kinase domain (TKD) contacts an "acceptor" TKD, leading to its activation. In the context of a ligand-induced dimer, identical wild-type EGFR TKDs are thought to assume the donor or acceptor roles in a random manner. Here, we present biochemical reconstitution data demonstrating that activated EGFR mutants found in lung cancer preferentially assume the acceptor role when coexpressed with WT EGFR. Mutated EGFRs show enhanced association with WT EGFR, leading to hyperphosphorylation of the WT counterpart. Mutated EGFRs also hyperphosphorylate the related erythroblastic leukemia viral oncogene (ErbB) family member, ErbB-2, in a similar manner. This directional "superacceptor activity" is particularly pronounced in the drug-resistant L834R/T766M mutant. A 4-Å crystal structure of this mutant in the active conformation reveals an asymmetric dimer interface that is essentially the same as that in WT EGFR. Asymmetric dimer formation induces an allosteric conformational change in the acceptor subunit. Thus, superacceptor activity likely arises simply from a lower energetic cost associated with this conformational change in the mutant EGFR compared with WT, rather than from any structural alteration that impairs the donor role of the mutant. Collectively, these findings define a previously unrecognized mode of mutant-specific intermolecular regulation for ErbB receptors, knowledge of which could potentially be exploited for therapeutic benefit.


Asunto(s)
Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Conformación Proteica , Animales , Cristalización , Dimerización , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Mutación Missense/genética , Células 3T3 NIH , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
15.
Cancer Cell ; 11(3): 217-27, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17349580

RESUMEN

Mutations in the EGFR kinase are a cause of non-small-cell lung cancer. To understand their mechanism of activation and effects on drug binding, we studied the kinetics of the L858R and G719S mutants and determined their crystal structures with inhibitors including gefitinib, AEE788, and a staurosporine. We find that the mutations activate the kinase by disrupting autoinhibitory interactions, and that they accelerate catalysis as much as 50-fold in vitro. Structures of inhibitors in complex with both wild-type and mutant kinases reveal similar binding modes for gefitinib and AEE788, but a marked rotation of the staurosporine in the G719S mutant. Strikingly, direct binding measurements show that gefitinib binds 20-fold more tightly to the L858R mutant than to the wild-type enzyme.


Asunto(s)
Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Mutación , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib , Humanos , Lapatinib , Conformación Proteica , Estructura Terciaria de Proteína , Purinas/química , Quinazolinas/química , Estaurosporina/análogos & derivados , Estaurosporina/química
16.
Nature ; 462(7276): 1070-4, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20033049

RESUMEN

The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/genética , Pulmón/efectos de los fármacos , Ratones , Modelos Químicos , Modelos Moleculares , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/toxicidad
17.
Proc Natl Acad Sci U S A ; 109(36): 14476-81, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908275

RESUMEN

We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.


Asunto(s)
Adenocarcinoma/enzimología , Neoplasias Pulmonares/enzimología , Mutación/genética , Receptor ErbB-2/genética , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Alelos , Animales , Movimiento Celular/fisiología , Clonación Molecular , Cartilla de ADN/genética , Dimerización , Immunoblotting , Neoplasias Pulmonares/genética , Ratones , Células 3T3 NIH , Fosforilación , Estructura Terciaria de Proteína/genética , Retroviridae , Espectrometría de Masas en Tándem
18.
Nat Commun ; 14(1): 4776, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553334

RESUMEN

Chitin is one of the most abundant natural biopolymers and serves as a critical structural component of extracellular matrices, including fungal cell walls and insect exoskeletons. As a linear polymer of ß-(1,4)-linked N-acetylglucosamine, chitin is synthesized by chitin synthases, which are recognized as targets for antifungal and anti-insect drugs. In this study, we determine seven different cryo-electron microscopy structures of a Saccharomyces cerevisiae chitin synthase in the absence and presence of glycosyl donor, acceptor, product, or peptidyl nucleoside inhibitors. Combined with functional analyses, these structures show how the donor and acceptor substrates bind in the active site, how substrate hydrolysis drives self-priming, how a chitin-conducting transmembrane channel opens, and how peptidyl nucleoside inhibitors inhibit chitin synthase. Our work provides a structural basis for understanding the function and inhibition of chitin synthase.


Asunto(s)
Quitina Sintasa , Quitina , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Quitina/metabolismo , Microscopía por Crioelectrón , Nucleósidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Catálisis
19.
Sci Adv ; 9(37): eadh7820, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703377

RESUMEN

1,3-ß-Glucan serves as the primary component of the fungal cell wall and is produced by 1,3-ß-glucan synthase located in the plasma membrane. This synthase is a molecular target for antifungal drugs such as echinocandins and the triterpenoid ibrexafungerp. In this study, we present the cryo-electron microscopy structure of Saccharomyces cerevisiae 1,3-ß-glucan synthase (Fks1) at 2.47-Å resolution. The structure reveals a central catalytic region adopting a cellulose synthase fold with a cytosolic conserved GT-A-type glycosyltransferase domain and a closed transmembrane channel responsible for glucan transportation. Two extracellular disulfide bonds are found to be crucial for Fks1 enzymatic activity. Through structural comparative analysis with cellulose synthases and structure-guided mutagenesis studies, we gain previously unknown insights into the molecular mechanisms of fungal 1,3-ß-glucan synthase.


Asunto(s)
beta-Glucanos , Microscopía por Crioelectrón , Antifúngicos , Catálisis
20.
Science ; 379(6636): 996-1003, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893255

RESUMEN

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , L-Lactato Deshidrogenasa , Metaboloma , Humanos , Ácidos Grasos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Especificidad de Órganos , Espectrometría de Masas/métodos , Regulación Alostérica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA