Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881493

RESUMEN

Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.

2.
Circ Res ; 133(6): 463-480, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555328

RESUMEN

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Prolapso de la Válvula Mitral , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/prevención & control , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 44(7): 1540-1554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38660802

RESUMEN

BACKGROUND: Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS: Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-ß-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS: Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS: Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrilina-1 , Válvula Mitral , Vía de Señalización Wnt , Animales , Fibrilina-1/genética , Fibrilina-1/metabolismo , Válvula Mitral/metabolismo , Válvula Mitral/patología , Válvula Mitral/efectos de los fármacos , Ratones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Transgénicos , Síndrome de Marfan/genética , Síndrome de Marfan/complicaciones , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Insuficiencia de la Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/prevención & control , Insuficiencia de la Válvula Mitral/genética , Ratones Endogámicos C57BL , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Inflamación/genética , Masculino , Femenino , Moléculas de Adhesión Celular , Adipoquinas
4.
Arterioscler Thromb Vasc Biol ; 43(8): 1478-1493, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37381982

RESUMEN

BACKGROUND: Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets. METHODS: To determine whether disruption of Prox1 localization affects heart valve development, we generated mice (NFATc1enCre Prox1 gain-of-function) in which Prox1 is overexpressed on the ventricularis side of the AoV beginning in embryonic development. To identify potential targets of Prox1, we performed cleavage under targets and release using nuclease on wild-type and NFATc1enCre Prox1 gain-of-function AoVs with validation by colocalization in vivo using RNA in situ hybridization in NFATc1enCre Prox1 gain-of-function AoVs. Natural induction of Prox1 and target gene expression was evaluated in myxomatous AoVs in a mouse model of Marfan syndrome (Fbn1C1039G/+). RESULTS: The overexpression of Prox1 is sufficient to cause enlargement of AoVs by postnatal day (P)0, as well as a decrease in ventricularis-specific gene expression and disorganized interstitial ECM layers at P7. We identified potential targets of Prox1 known to play roles in lymphatic ECs including Flt1, Efnb2, Egfl7, and Cx37. Ectopic Prox1 colocalized with induced Flt1, Efnb2, and Cx37 expression in NFATc1enCre Prox1 gain-of-function AoVs. Moreover, in Marfan syndrome myxomatous AoVs, endogenous Prox1, and its identified targets, were ectopically induced in ventricularis side VECs. CONCLUSIONS: Our results support a role for Prox1 in localized lymphatic-like gene expression on the fibrosa side of the AoV. Furthermore, localized VEC specialization is required for development of the stratified trilaminar ECM critical for AoV function and is dysregulated in congenitally malformed valves.


Asunto(s)
Válvula Aórtica , Síndrome de Marfan , Ratones , Animales , Válvula Aórtica/metabolismo , Síndrome de Marfan/metabolismo , Matriz Extracelular/metabolismo , Factores de Transcripción/metabolismo , Células Endoteliales/metabolismo
5.
J Mol Cell Cardiol ; 179: 30-41, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062247

RESUMEN

Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.


Asunto(s)
Proteínas Inmediatas-Precoces , Proteínas Supresoras de Tumor , Animales , Ratones , Ratas , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Supresoras de Tumor/metabolismo
6.
Development ; 147(13)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620577

RESUMEN

The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/embriología , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/embriología , Válvulas Cardíacas/patología , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/metabolismo , Hemodinámica/fisiología , Humanos
7.
Proc Natl Acad Sci U S A ; 117(35): 21469-21479, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817558

RESUMEN

During the postnatal period in mammals, the cardiac muscle transitions from hyperplasic to hypertrophic growth, the extracellular matrix (ECM) undergoes remodeling, and the heart loses regenerative capacity. While ECM maturation and crosstalk between cardiac fibroblasts (CFs) and cardiomyocytes (CMs) have been implicated in neonatal heart development, not much is known about specialized fibroblast heterogeneity and function in the early postnatal period. In order to better understand CF functions in heart maturation and postnatal cardiomyocyte cell-cycle arrest, we have performed gene expression profiling and ablation of postnatal CF populations. Fibroblast lineages expressing Tcf21 or Periostin were traced in transgenic GFP reporter mice, and their biological functions and transitions during the postnatal period were examined in sorted cells using RNA sequencing. Highly proliferative Periostin (Postn)+ lineage CFs were found from postnatal day 1 (P1) to P11 but were not detected at P30, due to a repression of Postn gene expression. This population was less abundant and transcriptionally different from Tcf21+ resident CFs. The specialized Postn+ population preferentially expresses genes related to cell proliferation and neuronal development, while Tcf21+ CFs differentially express genes related to ECM maturation at P7 and immune crosstalk at P30. Ablation of the Postn+ CFs from P0 to P6 led to altered cardiac sympathetic nerve patterning and a reduction in binucleation and hypertrophic growth with increased fetal troponin (TroponinI1) expression in CM. Thus, postnatal CFs are heterogeneous and include a transient proliferative Postn+ population required for cardiac nerve development and cardiomyocyte maturation soon after birth.


Asunto(s)
Diferenciación Celular/genética , Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Matriz Extracelular , Femenino , Fibroblastos/fisiología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Hipertrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Análisis de Secuencia de ARN
8.
Am J Physiol Heart Circ Physiol ; 322(4): H579-H596, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35179974

RESUMEN

During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.


Asunto(s)
Miocitos Cardíacos , Regeneración , Animales , Ciclo Celular , Proliferación Celular , Corazón/fisiología , Mamíferos , Miocitos Cardíacos/fisiología
9.
Development ; 146(12)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796046

RESUMEN

Heart valve cells mediate extracellular matrix (ECM) remodeling during postnatal valve leaflet stratification, but phenotypic and transcriptional diversity of valve cells in development is largely unknown. Single cell analysis of mouse heart valve cells was used to evaluate cell heterogeneity during postnatal ECM remodeling and leaflet morphogenesis. The transcriptomic analysis of single cells from postnatal day (P)7 and P30 murine aortic (AoV) and mitral (MV) heart valves uncovered distinct subsets of melanocytes, immune and endothelial cells present at P7 and P30. By contrast, interstitial cell populations are different from P7 to P30. P7 valve leaflets exhibit two distinct collagen- and glycosaminoglycan-expressing interstitial cell clusters, and prevalent ECM gene expression. At P30, four interstitial cell clusters are apparent with leaflet specificity and differential expression of complement factors, ECM proteins and osteogenic genes. This initial transcriptomic analysis of postnatal heart valves at single cell resolution demonstrates that subpopulations of endothelial and immune cells are relatively constant throughout postnatal development, but interstitial cell subpopulations undergo changes in gene expression and cellular functions in primordial and mature valves.


Asunto(s)
Válvula Aórtica/crecimiento & desarrollo , Matriz Extracelular/química , Válvula Mitral/crecimiento & desarrollo , Animales , Válvula Aórtica/fisiología , Diferenciación Celular , Linaje de la Célula , Análisis por Conglomerados , Colágeno/química , Células Endoteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Glicosaminoglicanos/química , Homeostasis , Humanos , Inmunohistoquímica , Masculino , Melanocitos/citología , Ratones , Válvula Mitral/fisiología , Fenotipo , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Porcinos , Ingeniería de Tejidos/métodos , Transcriptoma
10.
Genet Med ; 24(7): 1503-1511, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35420547

RESUMEN

PURPOSE: This study aimed to develop objective diagnostic criteria for early onset Marfan syndrome (eoMFS) to facilitate early diagnosis and timely interventions. METHODS: On the basis of an extensive literature review and the responses from a survey distributed among providers with expertise in the diagnosis and management of eoMFS, we developed an age-based, diagnostic scoring system encompassing 10 features common to eoMFS (9 clinical + 1 laboratory) and divided them into cardiac, systemic, and FBN1 (on the basis of the location of the pathogenic FBN1 variant) scores. RESULTS: In total, 77 individuals with eoMFS (13 newly reported) and 49 individuals diagnosed with classical Marfan syndrome during early childhood were used to validate the criteria. Median cardiac (8 vs 0, P < .001), systemic (11 vs 3, P < .001), FBN1 (5 vs 0, P < .001), and total (23 vs 4, P < .001) scores were significantly higher in individuals with eoMFS than in those without. A proposed clinical score (cardiac + systemic) cutoff of ≥14 points showed excellent sensitivity (100%), specificity (92%), and reliability (correctly classified = 94%). CONCLUSION: Distinct from classical Marfan syndrome in phenotype and morbidity, eoMFS can be diagnosed clinically using an objective scoring system encompassing the typical physical features and cardiac disease manifestations. Although genetic testing can be suggestive of eoMFS, genetic testing alone is insufficient for diagnosis.


Asunto(s)
Enfermedades del Recién Nacido , Síndrome de Marfan , Preescolar , Fibrilina-1/genética , Fibrilinas/genética , Humanos , Recién Nacido , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mutación , Fenotipo , Reproducibilidad de los Resultados
11.
Circ Res ; 126(7): 907-922, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32081062

RESUMEN

RATIONALE: Compromised protein quality control can result in proteotoxic intracellular protein aggregates in the heart, leading to cardiac disease and heart failure. Defining the participants and understanding the underlying mechanisms of cardiac protein aggregation is critical for seeking therapeutic targets. We identified Ube2v1 (ubiquitin-conjugating enzyme E2 variant 1) in a genome-wide screen designed to identify novel effectors of the aggregation process. However, its role in the cardiomyocyte is undefined. OBJECTIVE: To assess whether Ube2v1 regulates the protein aggregation caused by cardiomyocyte expression of a mutant αB crystallin (CryABR120G) and identify how Ube2v1 exerts its effect. METHODS AND RESULTS: Neonatal rat ventricular cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB (CryABWT) or CryABR120G. Subsequently, loss- and gain-of-function experiments were performed. Ube2v1 knockdown decreased aggregate accumulation caused by CryABR120G expression. Overexpressing Ube2v1 promoted aggregate formation in CryABWT and CryABR120G-expressing neonatal rat ventricular cardiomyocytes. Ubiquitin proteasome system performance was analyzed using a ubiquitin proteasome system reporter protein. Ube2v1 knockdown improved ubiquitin proteasome system performance and promoted the degradation of insoluble ubiquitinated proteins in CryABR120G cardiomyocytes but did not alter autophagic flux. Lys (K) 63-linked ubiquitination modulated by Ube2v1 expression enhanced protein aggregation and contributed to Ube2v1's function in regulating protein aggregate formation. Knocking out Ube2v1 exclusively in cardiomyocytes by using AAV9 (adeno-associated virus 9) to deliver multiplexed single guide RNAs against Ube2v1 in cardiac-specific Cas9 mice alleviated CryABR120G-induced protein aggregation, improved cardiac function, and prolonged lifespan in vivo. CONCLUSIONS: Ube2v1 plays an important role in protein aggregate formation, partially by enhancing K63 ubiquitination during a proteotoxic stimulus. Inhibition of Ube2v1 decreases CryABR120G-induced aggregate formation through enhanced ubiquitin proteasome system performance rather than autophagy and may provide a novel therapeutic target to treat cardiac proteinopathies.


Asunto(s)
Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/metabolismo , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , Agregación Patológica de Proteínas/genética , Ratas , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
12.
J Mol Cell Cardiol ; 154: 124-136, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582160

RESUMEN

BACKGROUND: The intracardiac nervous system (ICNS) is composed of neurons, in association with Schwann cells (SC) and endoneurial cardiac fibroblasts (ECF). Besides heart rhythm control, recent studies have implicated cardiac nerves in postnatal cardiac regeneration and cardiomyocyte size regulation, but cardiac SC and ECF remain understudied. During the postnatal period, the ICNS undergoes intense remodeling with nerve fasciculation and elongation throughout the myocardium, partially guided by the extracellular matrix (ECM). Here we report the origins, heterogeneity, and functions of SC and ECF that develop in proximity to neurons during postnatal ICNS maturation. METHODS AND RESULTS: Periostin lineage (Postn+) cells include cardiac Remak SC and ECF during the postnatal period in mice. The developmental origins of cardiac SC and ECF were examined using Rosa26eGFP reporter mice bred with Wnt1Cre, expressed in Neural crest (NC)-derived lineages, or tamoxifen-inducible Tcf21MerCreMer, expressed predominantly in epicardial-derived fibroblast lineages. ICNS components are NC-derived with the exceptions of the myelinating Plp1+ SC and the Tcf21+ lineage-derived intramural ventricular ECF. In addition, Postn+ lineage GFAP- Remak SC and ECF are present around the fasciculating cardiac nerves. Whole mount studies of the NC-derived cells confirmed postnatal maturation of the complex ICNS network from P0 to P30. Sympathetic, parasympathetic, and sensory neurons fasciculate from P0 to P7 indicated by co-staining with PSA-NCAM. Ablation of Postn+ cells from P0 to P6 or loss of Periostin leads to reduced fasciculation of cardiac sympathetic nerves. In addition, collagen remodeling surrounding maturing nerves of the postnatal heart is reduced in Postn-null mice. CONCLUSIONS: Postn+ cells include cardiac SC and ECF during postnatal nerve maturation, and these cells have different embryonic origins. At P7, the Postn+ cells associated with cardiac nerves are mainly Remak SC and ECF. Ablation of the Postn+ cells from P0 to P6 and also loss of Postn in Postn-null mice leads to reduced fasciculation of cardiac nerves at P7.


Asunto(s)
Fasciculación Axonal/genética , Moléculas de Adhesión Celular/genética , Fibroblastos/metabolismo , Expresión Génica , Células de Schwann/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Ratones
13.
Circulation ; 141(2): 132-146, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31928435

RESUMEN

BACKGROUND: Myxomatous valve degeneration (MVD) involves the progressive thickening and degeneration of the heart valves, leading to valve prolapse, regurgitant blood flow, and impaired cardiac function. Leukocytes composed primarily of macrophages have recently been detected in myxomatous valves, but the timing of the presence and the contributions of these cells in MVD progression are not known. METHODS: We examined MVD progression, macrophages, and the valve microenvironment in the context of Marfan syndrome (MFS) using mitral valves from MFS mice (Fbn1C1039G/+), gene-edited MFS pigs (FBN1Glu433AsnfsX98/+), and patients with MFS. Additional histological and transcriptomic evaluation was performed by using nonsyndromic human and canine myxomatous valves, respectively. Macrophage ontogeny was determined using MFS mice transplanted with mTomato+ bone marrow or MFS mice harboring RFP (red fluorescent protein)-tagged C-C chemokine receptor type 2 (CCR2) monocytes. Mice deficient in recruited macrophages (Fbn1C1039G/+;Ccr2RFP/RFP) were generated to determine the requirements of recruited macrophages to MVD progression. RESULTS: MFS mice recapitulated histopathological features of myxomatous valve disease by 2 months of age, including mitral valve thickening, increased leaflet cellularity, and extracellular matrix abnormalities characterized by proteoglycan accumulation and collagen fragmentation. Diseased mitral valves of MFS mice concurrently exhibited a marked increase of infiltrating (MHCII+, CCR2+) and resident macrophages (CD206+, CCR2-), along with increased chemokine activity and inflammatory extracellular matrix modification. Likewise, mitral valve specimens obtained from gene-edited MFS pigs and human patients with MFS exhibited increased monocytes and macrophages (CD14+, CD64+, CD68+, CD163+) detected by immunofluorescence. In addition, comparative transcriptomic evaluation of both genetic (MFS mice) and acquired forms of MVD (humans and dogs) unveiled a shared upregulated inflammatory response in diseased valves. Remarkably, the deficiency of monocytes was protective against MVD progression, resulting in a significant reduction of MHCII macrophages, minimal leaflet thickening, and preserved mitral valve integrity. CONCLUSIONS: All together, our results suggest sterile inflammation as a novel paradigm to disease progression, and we identify, for the first time, monocytes as a viable candidate for targeted therapy in MVD.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/patología , Síndrome de Marfan/patología , Monocitos/metabolismo , Animales , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Enfermedades de las Válvulas Cardíacas/complicaciones , Enfermedades de las Válvulas Cardíacas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Síndrome de Marfan/complicaciones , Síndrome de Marfan/metabolismo , Ratones , Ratones Endogámicos C57BL , Válvula Mitral/metabolismo , Válvula Mitral/fisiopatología , Monocitos/citología , Porcinos
14.
Annu Rev Physiol ; 79: 21-41, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-27959615

RESUMEN

Normal aortic valves are composed of valve endothelial cells (VECs) and valve interstitial cells (VICs). VICs are the major cell population and have distinct embryonic origins in the endocardium and cardiac neural crest cells. Cell signaling between the VECs and VICs plays critical roles in aortic valve morphogenesis. Disruption of major cell signaling pathways results in aortic valve malformations, including bicuspid aortic valve (BAV). BAV is a common congenital heart valve disease that may lead to calcific aortic valve disease (CAVD), but there is currently no effective medical treatment for this beyond surgical replacement. Mouse and human studies have identified causative gene mutations for BAV and CAVD via disrupted VEC to VIC signaling. Future studies on the developmental signaling mechanisms underlying aortic valve malformations and the pathogenesis of CAVD using genetically modified mouse models and patient-induced pluripotent stem cells may identify new effective therapeutic targets for the disease.


Asunto(s)
Válvula Aórtica/patología , Enfermedades de las Válvulas Cardíacas/patología , Animales , Células Endoteliales/patología , Enfermedades de las Válvulas Cardíacas/genética , Humanos , Transducción de Señal/genética
15.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807107

RESUMEN

During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.


Asunto(s)
Diferenciación Celular/genética , Regulación de la Expresión Génica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración/genética , Transcripción Genética , Animales , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Proliferación Celular , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Epigénesis Genética , Humanos , Hipertrofia , Oxidación-Reducción
16.
J Mol Cell Cardiol ; 146: 95-108, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710980

RESUMEN

BACKGROUND: Rodent cardiomyocytes (CM) undergo mitotic arrest and decline of mononucleated-diploid population post-birth, which are implicated in neonatal loss of heart regenerative potential. However, the dynamics of postnatal CM maturation are largely unknown in swine, despite a similar neonatal cardiac regenerative capacity as rodents. Here, we provide a comprehensive analysis of postnatal cardiac maturation in swine, including CM cell cycling, multinucleation and hypertrophic growth, as well as non-CM cardiac factors such as extracellular matrix (ECM), immune cells, capillaries, and neurons. Our study reveals discordance in postnatal pig heart maturational events compared to rodents. METHODS AND RESULTS: Left-ventricular myocardium from White Yorkshire-Landrace pigs at postnatal day (P)0 to 6 months (6mo) was analyzed. Mature cardiac sarcomeric characteristics, such as fetal TNNI1 repression and Cx43 co-localization to cell junctions, were not evident until P30 in pigs. In CMs, appreciable binucleation is observed by P7, with extensive multinucleation (4-16 nuclei per CM) beyond P15. Individual CM nuclei remain predominantly diploid at all ages. CM mononucleation at ~50% incidence is observed at P7-P15, and CM mitotic activity is measurable up to 2mo. CM cross-sectional area does not increase until 2mo-6mo in pigs, though longitudinal CM growth proportional to multinucleation occurs after P15. RNAseq analysis of neonatal pig left ventricles showed increased expression of ECM maturation, immune signaling, neuronal remodeling, and reactive oxygen species response genes, highlighting significance of the non-CM milieu in postnatal mammalian heart maturation. CONCLUSIONS: CM maturational events such as decline of mononucleation and cell cycle arrest occur over a 2-month postnatal period in pigs, despite reported loss of heart regenerative potential by P3. Moreover, CMs grow primarily by multinucleation and longitudinal hypertrophy in older pig CMs, distinct from mice and humans. These differences are important to consider for preclinical testing of cardiovascular therapies using swine, and may offer opportunities to study aspects of heart regeneration unavailable in other models.


Asunto(s)
Ciclo Celular , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Ácidos Carboxílicos/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Diploidia , Regulación hacia Abajo/genética , Matriz Extracelular/metabolismo , Uniones Comunicantes/metabolismo , Ventrículos Cardíacos/citología , Hipertrofia , Mitosis , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sarcómeros/metabolismo , Transducción de Señal , Porcinos , Transcriptoma/genética , Regulación hacia Arriba/genética
17.
Dev Biol ; 443(1): 50-63, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153454

RESUMEN

Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1-/- mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1-/-) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1-/-) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1-/-) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/embriología , Animales , Proliferación Celular , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Pulmón/citología , Pulmón/metabolismo , Mesodermo/metabolismo , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Transcriptoma/genética
18.
Arterioscler Thromb Vasc Biol ; 38(3): 636-644, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29348122

RESUMEN

OBJECTIVE: Hematopoietic-derived cells have been reported in heart valves but remain poorly characterized. Interestingly, recent studies reveal infiltration of leukocytes and increased macrophages in human myxomatous mitral valves. Nevertheless, timing and contribution of macrophages in normal valves and myxomatous valve disease are still unknown. The objective is to characterize leukocytes during postnatal heart valve maturation and identify macrophage subsets in myxomatous valve disease. APPROACH AND RESULTS: Leukocytes are detected in heart valves after birth, and their numbers increase during postnatal valve development. Flow cytometry and immunostaining analysis indicate that almost all valve leukocytes are myeloid cells, consisting of at least 2 differentially localized macrophage subsets and dendritic cells. Beginning a week after birth, increased numbers of CCR2+ (C-C chemokine receptor type 2) macrophages are present, consistent with infiltrating populations of monocytes, and macrophages are localized in regions of biomechanical stress in the valve leaflets. Valve leukocytes maintain expression of CD (cluster of differentiation) 45 and do not contribute to significant numbers of endothelial or interstitial cells. Macrophage lineages were examined in aortic and mitral valves of Axin2 KO (knockout) mice that exhibit myxomatous features. Infiltrating CCR2+ monocytes and expansion of CD206-expressing macrophages are localized in regions where modified heavy chain hyaluronan is observed in myxomatous valve leaflets. Similar colocalization of modified hyaluronan and increased numbers of macrophages were observed in human myxomatous valve disease. CONCLUSIONS: Our study demonstrates the heterogeneity of myeloid cells in heart valves and highlights an alteration of macrophage subpopulations, notably an increased presence of infiltrating CCR2+ monocytes and CD206+ macrophages, in myxomatous valve disease.


Asunto(s)
Linaje de la Célula , Matriz Extracelular/patología , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/patología , Macrófagos/patología , Factores de Edad , Anciano , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Lectinas Tipo C/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Fenotipo , Receptores CCR2/metabolismo , Receptores de Superficie Celular/metabolismo
19.
Pediatr Cardiol ; 40(7): 1345-1358, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31346664

RESUMEN

The neonatal capacity for cardiac regeneration in mice is well studied and has been used to develop many potential strategies for adult cardiac regenerative repair following injury. However, translating these findings from rodents to designing regenerative therapeutics for adult human heart disease remains elusive. Large mammals including pigs, dogs, and sheep are widely used as animal models of humans in preclinical trials of new cardiac drugs and devices. However, very little is known about the fundamental cardiac cell biology and the timing of postnatal cardiac events that influence cardiomyocyte proliferation in these animals. There is emerging evidence that external physiological and environmental cues could be the key to understanding cardiomyocyte proliferative behavior. In this review, we survey available literature on postnatal development in various large mammal models to offer a perspective on the physiological and cellular characteristics that could be regulating cardiomyocyte proliferation. Similarities and differences between developmental milestones, cardiomyocyte maturational events, as well as environmental cues regulating cardiac development, are discussed for various large mammals, with a focus on postnatal cardiac regenerative potential and translatability to the human heart.


Asunto(s)
Proliferación Celular/fisiología , Corazón/fisiología , Regeneración/fisiología , Animales , Modelos Animales de Enfermedad , Perros , Humanos , Miocitos Cardíacos/fisiología , Ovinos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA