Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 235(10): 7261-7272, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32180230

RESUMEN

Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFß1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFß for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.


Asunto(s)
Neoplasias de la Mama/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Ratones SCID , Células Madre Neoplásicas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
2.
J Cell Physiol ; 234(11): 19189-19198, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30980400

RESUMEN

The cells of the bone marrow microenvironment are emerging as important contributors and regulators of normal hematopoiesis. This microenvironment is perturbed during leukemogenesis, and evidence points toward a bidirectional communication between leukemia cells and the normal cells of the bone marrow, mediated by direct cell-cell contact as well as soluble factors. These interactions are increasingly appreciated to play a role in leukemogenesis and possibly in resistance to chemotherapy. In fact, several compounds that specifically target the bone marrow microenvironment, including inhibitors of cell adhesion, are being tested as adjuncts to leukemia therapy.


Asunto(s)
Carcinogénesis/genética , Adhesión Celular/genética , Hematopoyesis/genética , Leucemia/genética , Médula Ósea/metabolismo , Humanos , Leucemia/patología , Nicho de Células Madre/genética , Microambiente Tumoral/genética
3.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515788

RESUMEN

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Pronóstico , Transducción de Señal
4.
J Cell Physiol ; 233(12): 9136-9144, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968906

RESUMEN

Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/patología , Femenino , Heterogeneidad Genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
5.
J Cell Physiol ; 233(2): 1278-1290, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28504305

RESUMEN

Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromosomas Humanos Par 6 , Histonas/genética , Familia de Multigenes , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patología , Forma del Núcleo Celular , Proliferación Celular , Cromatina/metabolismo , Biología Computacional , Bases de Datos Genéticas , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Regulación hacia Arriba
6.
J Cell Physiol ; 232(6): 1254-1257, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27532275

RESUMEN

The cell cycle in pluripotent human embryonic stem cells is governed by unique mechanisms that support unrestricted proliferation and competency for endodermal, mesodermal, and ectodermal differentiation. The abbreviated G1 period with retention of uncompromised fidelity for genetic and epigenetic mechanisms operative in control of proliferation support competency for expansion of the pluripotent cell population that is fundamental for initial stages of development. Regulatory events during the G1 period of the pluripotent cell cycle are decisive for the transition from pluripotency to lineage commitment. Recent findings indicate that a G2 cell cycle pause is present in both endodermal and mesodermal lineage cells, and is obligatory for differentiation to endoderm. J. Cell. Physiol. 232: 1254-1257, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ciclo Celular , Células Madre Embrionarias Humanas/citología , Diferenciación Celular , Linaje de la Célula , Humanos , Modelos Biológicos
7.
J Cell Biochem ; 118(5): 953-958, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27591551

RESUMEN

A novel role for phenotypic transcription factors in very early differentiation was recently observed and merits further study to elucidate what role this precocious expression may have in development. The RUNX1 transcription factor exhibits selective and transient upregulation during early mesenchymal differentiation. In contrast to phenotype-associated transcriptional control of gene expression to establish and sustain hematopoietic/myeloid lineage identity, precocious expression of RUNX1 is functionally linked to control of an epithelial to mesenchymal transition that is obligatory for development. This early RUNX1 expression spike provides a paradigm for precocious expression of a phenotypic transcription factor that invites detailed mechanistic study to fully understand its biological importance. J. Cell. Biochem. 118: 953-958, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/citología , Regulación hacia Arriba , Animales , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Humanos , Especificidad de Órganos
8.
Stem Cells ; 34(7): 1765-75, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26946228

RESUMEN

Human embryonic stem cells (hESCs) have an abbreviated G1 phase of the cell cycle that allows rapid proliferation and maintenance of pluripotency. Lengthening of G1 corresponds to loss of pluripotency during differentiation. However, precise mechanisms that link alterations in the cell cycle and early differentiation remain to be defined. We investigated initial stages of mesendodermal lineage commitment in hESCs, and observed a cell cycle pause. Transcriptome profiling identified several genes with known roles in regulation of the G2/M transition that were differentially expressed early during lineage commitment. WEE1 kinase, which blocks entry into mitosis by phosphorylating CDK1 at Y15, was the most highly expressed of these genes. Inhibition of CDK1 phosphorylation by a specific inhibitor of WEE1 restored cell cycle progression by preventing the G2 pause. Directed differentiation of hESCs revealed that cells paused during commitment to the endo- and mesodermal, but not ectodermal, lineages. Functionally, WEE1 inhibition during meso- and endodermal differentiation selectively decreased expression of definitive endodermal markers SOX17 and FOXA2. Our findings identify a novel G2 cell cycle pause that is required for endodermal differentiation and provide important new mechanistic insights into early events of lineage commitment. Stem Cells 2016;34:1765-1775.


Asunto(s)
Puntos de Control del Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Fase G2 , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Análisis por Conglomerados , Células Madre Embrionarias/metabolismo , Endodermo/citología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Mesodermo/citología , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Regulación hacia Arriba/genética
9.
Adv Exp Med Biol ; 962: 95-102, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28299653

RESUMEN

Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.


Asunto(s)
Linaje de la Célula/genética , Proliferación Celular/genética , Epigénesis Genética/genética , Mitosis/genética , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Expresión Génica/genética , Humanos
10.
J Cell Physiol ; 231(9): 2007-13, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26755341

RESUMEN

Embryonic stem cells (ESCs) exhibit unrestricted and indefinite, but stringently controlled, proliferation, and can differentiate into any lineage in the body. In the current study, we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs, we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines, a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches, we discovered that, RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1, M, and G2 phases of the cell cycle. Interestingly, the rDNA repeats are marked by the activating H3K4me3 only in the M phase, and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc, a known regulator of cell growth and proliferation, occupies both the rRNA genes and RPGs. Functionally, down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together, our results show that expression of rRNA, which is regulated by the Myc pluripotency transcription factor, and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Embrionarias Humanas/citología , ARN Ribosómico/genética , Ciclo Celular , Inmunoprecipitación de Cromatina/métodos , Epigénesis Genética/fisiología , Código de Histonas , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Ribosómico/metabolismo
11.
J Cell Physiol ; 231(1): 31-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26059817

RESUMEN

Three-dimensional organization of the chromatin has important roles in transcription, replication, DNA repair, and pathologic events such as translocations. There are two fundamental ways to study higher-order chromatin organization: microscopic and molecular approaches. In this review, we briefly introduce the molecular approaches, focusing on chromosome conformation capture or "3C" technology and its derivatives, which can be used to probe chromatin folding at resolutions beyond that provided by microscopy techniques. We further discuss the different types of data generated by the 3C-based methods and how they can be used to answer distinct biological questions.


Asunto(s)
Cromatina/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , ADN/genética , Genoma/genética , Microscopía , Animales , Cromatina/química , Humanos , Microscopía/métodos
12.
J Cell Biochem ; 117(1): 9-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26192137

RESUMEN

The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Interfase/genética , Animales , Núcleo Celular/genética , Humanos
13.
Tumour Biol ; 37(7): 8825-39, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26749280

RESUMEN

The Runx1 transcription factor, known for its essential role in normal hematopoiesis, was reported in limited studies to be mutated or associated with human breast tumor tissues. Runx1 increases concomitantly with disease progression in the MMTV-PyMT transgenic mouse model of breast cancer. Compelling questions relate to mechanisms that regulate Runx1 expression in breast cancer. Here, we tested the hypothesis that dysregulation of Runx1-targeting microRNAs (miRNAs) allows for pathologic increase of Runx1 during breast cancer progression. Microarray profiling of the MMTV-PyMT model revealed significant downregulation of numerous miRNAs predicted to target Runx1. One of these, miR-378, was inversely correlated with Runx1 expression during breast cancer progression in mice and in human breast cancer cell lines MCF7 and triple-negative MDA-MB-231 that represent early- and late-stage diseases, respectively. MiR-378 is nearly absent in MDA-MB-231 cells. Luciferase reporter assays revealed that miR-378 binds the Runx1 3' untranslated region (3'UTR) and inhibits Runx1 expression. Functionally, we demonstrated that ectopic expression of miR-378 in MDA-MB-231 cells inhibited Runx1 and suppressed migration and invasion, while inhibition of miR-378 in MCF7 cells increased Runx1 levels and cell migration. Depletion of Runx1 in late-stage breast cancer cells resulted in increased expression of both the miR-378 host gene PPARGC1B and pre-miR-378, suggesting a feedback loop. Taken together, our study identifies a novel and clinically relevant mechanism for regulation of Runx1 in breast cancer that is mediated by a PPARGC1B-miR-378-Runx1 regulatory pathway. Our results highlight the translational potential of miRNA replacement therapy for inhibiting Runx1 in breast cancer.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo/genética , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Ratones , Fenotipo , Neoplasias de la Mama Triple Negativas/patología
14.
Nat Rev Genet ; 11(8): 583-9, 2010 08.
Artículo en Inglés | MEDLINE | ID: mdl-20628351

RESUMEN

Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation--a mechanism collectively known as gene bookmarking--is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.


Asunto(s)
Epigénesis Genética , Mitosis/genética , Modelos Genéticos , Animales , Diferenciación Celular/genética , Proliferación Celular , Metilación de ADN , Histonas/metabolismo , Humanos , Interfase/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Regiones Promotoras Genéticas , ARN no Traducido/genética , Factores de Transcripción/metabolismo
15.
Nat Rev Cancer ; 7(6): 454-63, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17522714

RESUMEN

Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.


Asunto(s)
Núcleo Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/ultraestructura , Transporte Activo de Núcleo Celular , Compartimento Celular , Núcleo Celular/ultraestructura , Subunidades alfa del Factor de Unión al Sitio Principal/fisiología , Humanos , Modelos Biológicos , Matriz Nuclear , Secuencias Reguladoras de Ácidos Nucleicos
16.
BMC Genomics ; 16: 309, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25928846

RESUMEN

BACKGROUND: Many leukemias result from chromosomal rearrangements. The t(8;21) chromosomal translocation produces AML1-ETO, an oncogenic fusion protein that compromises the function of AML1, a transcription factor critical for myeloid cell differentiation. Because of the pressing need for new therapies in the treatment of acute myleoid leukemia, we investigated the genome-wide occupancy of AML1-ETO in leukemic cells to discover novel regulatory mechanisms involving AML-ETO bound genes. RESULTS: We report the co-localization of AML1-ETO with the N-CoR co-repressor to be primarily on genomic regions distal to transcriptional start sites (TSSs). These regions exhibit over-representation of the motif for PU.1, a key hematopoietic regulator and member of the ETS family of transcription factors. A significant discovery of our study is that genes co-occupied by AML1-ETO and N-CoR (e.g., TYROBP and LAPTM5) are associated with the leukemic phenotype, as determined by analyses of gene ontology and by the observation that these genes are predominantly up-regulated upon AML1-ETO depletion. In contrast, the AML1-ETO/p300 gene network is less responsive to AML1-ETO depletion and less associated with the differentiation block characteristic of leukemic cells. Furthermore, a substantial fraction of AML1-ETO/p300 co-localization occurs near TSSs in promoter regions associated with transcriptionally active loci. CONCLUSIONS: Our findings establish a novel and dominant t(8;21) AML leukemia signature characterized by occupancy of AML1-ETO/N-CoR at promoter-distal genomic regions enriched in motifs for myeloid differentiation factors, thus providing mechanistic insight into the leukemic phenotype.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Genoma Humano , Leucemia Mieloide Aguda/genética , Co-Represor 1 de Receptor Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Translocación Genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Regiones Promotoras Genéticas , Proteína 1 Compañera de Translocación de RUNX1 , Análisis de Secuencia de ADN
17.
J Cell Physiol ; 229(6): 711-27, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24242872

RESUMEN

Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.


Asunto(s)
Epigénesis Genética/genética , Eucariontes/genética , Genómica/métodos , Animales
18.
J Cell Sci ; 125(Pt 11): 2732-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22393235

RESUMEN

The osteogenic and oncogenic transcription factor RUNX2 downregulates the RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes histone modifications associated with the rDNA repeat. However, the mechanisms by which RUNX2 suppresses rRNA transcription are not well understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key role in chromatin remodeling and regulation of gene transcription. Here, we show that RUNX2 recruits HDAC1 to the rDNA repeats in osseous cells. This recruitment alters the histone modifications associated with active rRNA-encoding genes and causes deacetylation of the protein upstream binding factor (UBF, also known as UBTF). Downregulation of RUNX2 expression reduces the localization of HDAC1 to the nucleolar periphery and also decreases the association between HDAC1 and UBF. Functionally, depletion of HDAC1 relieves the RUNX2-mediated repression of rRNA-encoding genes and concomitantly increases cell proliferation and global protein synthesis in osseous cells. Our findings collectively identify a RUNX2-HDAC1-dependent mechanism for the regulation of rRNA-encoding genes and suggest that there is plasticity to RUNX2-mediated epigenetic control, which is mediated through selective mitotic exclusion of co-regulatory factors.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Ribosómico/genética , Acetilación , Línea Celular , Nucléolo Celular/metabolismo , Proliferación Celular , Cromatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , ADN Ribosómico/metabolismo , Técnicas de Silenciamiento del Gen , Sitios Genéticos/genética , Histonas/metabolismo , Humanos , Interfase , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , ARN Ribosómico/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética
19.
Cancer Epidemiol Biomarkers Prev ; 33(7): 870-873, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748491

RESUMEN

Advances in cancer prevention, early detection, and treatments have led to unprecedented progress against cancer. However, these advances have not benefited everyone equally. Because of a long history of structural inequities and systemic injustices in the United States, many segments of the US population continue to shoulder a disproportionate burden of cancer. The American Association for Cancer Research (AACR) Cancer Disparities Progress Report 2024 (CancerDisparitiesProgressReport.org) outlines the recent progress against cancer disparities, the ongoing challenges faced by medically underserved populations, and emphasizes the vital need for further advances in cancer research and patient care to benefit all populations.


Asunto(s)
Equidad en Salud , Neoplasias , Humanos , Neoplasias/epidemiología , Estados Unidos/epidemiología , Disparidades en Atención de Salud/estadística & datos numéricos
20.
J Cell Physiol ; 228(11): 2103-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23589100

RESUMEN

Cancer is a multifaceted disease that involves acquisition of genetic mutations, deletions, and amplifications as well as deregulation of epigenetic mechanisms that fine-tune gene regulation. Key epigenetic mechanisms that include histone modifications, DNA methylation, and non-coding RNA-mediated gene silencing are often deregulated in a variety of cancers. Subnuclear localization of key proteins in the interphase nucleus and bookmarking of genes by lineage commitment factors in mitosis-a new dimension to epigenetic control of fundamental biological processes-is also modified in cancer. In this review, we discuss the various aspects of epigenetic control that are operative in a variety of cancers and their potential for risk assessment, early detection, targeted therapy, and personalized medicine.


Asunto(s)
Epigénesis Genética , Neoplasias/genética , Animales , Metilación de ADN/genética , Histonas/metabolismo , Humanos , ARN no Traducido/metabolismo , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA