Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 59: 101606, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691882

RESUMEN

Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/genética , Citocinas
2.
Cancer Metastasis Rev ; 43(1): 363-377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012357

RESUMEN

This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.


Asunto(s)
Aptámeros de Nucleótidos , MicroARNs , Anticuerpos de Dominio Único , Vacunas , Humanos , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/uso terapéutico , Resistencia a Medicamentos , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Metástasis de la Neoplasia , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Vacunas/farmacología , Vacunas/uso terapéutico , Vimentina/antagonistas & inhibidores , Vimentina/genética , Vimentina/metabolismo
3.
Cell Mol Life Sci ; 81(1): 184, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630152

RESUMEN

Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.


Asunto(s)
Nanopartículas , Nanoestructuras , Autofagia
4.
Small ; : e2311903, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453672

RESUMEN

In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.

5.
Cell Commun Signal ; 22(1): 36, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216942

RESUMEN

Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.


Asunto(s)
Neoplasias , Neoplasias de la Próstata , Masculino , Humanos , Epigénesis Genética , Microambiente Tumoral , Neoplasias de la Próstata/genética , Neoplasias/patología , Mutación , Células Madre Neoplásicas/patología
6.
Med Res Rev ; 43(5): 1263-1321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951271

RESUMEN

Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.


Asunto(s)
Neoplasias Gastrointestinales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gastrointestinales/genética , Transducción de Señal , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
7.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
8.
Small ; 19(19): e2207057, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36775954

RESUMEN

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Asunto(s)
Antibacterianos , Antioxidantes , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Cicatrización de Heridas , Estrés Oxidativo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química
9.
J Gen Intern Med ; 38(2): 277-284, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35319086

RESUMEN

BACKGROUND: The per diem financial structure of hospice care may lead agencies to consider patient-level factors when weighing admissions. OBJECTIVE: To investigate if treatment cost, disease complexity, and diagnosis are associated with hospice willingness to accept patients. DESIGN: In this 2019 online survey study, individuals involved in hospice admissions decisions were randomized to view one of six hypothetical patient vignettes: "high-cost, high-complexity," "low-cost, high-complexity," and "low-cost, low-complexity" within two diseases: heart failure and cystic fibrosis. Vignettes included demographics, prognoses, goals, and medications with costs. Respondents indicated their perceived likelihood of acceptance to their hospice; if likelihood was <100%, respondents were asked the barriers to acceptance. We used bivariate tests to examine associations between demographic, clinical, and organizational factors and likelihood of acceptance. PARTICIPANTS: Individuals involved in hospice admissions decisions MAIN MEASURES: Likelihood of acceptance to hospice care KEY RESULTS: N=495 (76% female, 53% age 45-64). Likelihoods of acceptance in cystic fibrosis were 79.8% (high-cost, high-complexity), 92.4% (low-cost, high-complexity), and 91.5% (low-cost, low-complexity), and in heart failure were 65.9% (high-cost, high-complexity), 87.3% (low-cost, high-complexity), and 96.6% (low-cost, low-complexity). For both heart failure and cystic fibrosis, respondents were less likely to accept the high-cost, high-complexity patient than the low-cost, high-complexity patient (65.9% vs. 87.3%, 79.8% vs. 92.4%, both p<0.001). For heart failure, respondents were less likely to accept the low-cost, high-complexity patient than the low-cost, low-complexity patient (87.3% vs. 96.6%, p=0.004). Treatment cost was the most common barrier for 5 of 6 vignettes. CONCLUSIONS: This study suggests that patients receiving expensive and/or complex treatments for palliation may have difficulty accessing hospice.


Asunto(s)
Fibrosis Quística , Insuficiencia Cardíaca , Cuidados Paliativos al Final de la Vida , Hospitales para Enfermos Terminales , Humanos , Femenino , Persona de Mediana Edad , Masculino , Costos de la Atención en Salud , Insuficiencia Cardíaca/terapia
10.
Pharmacol Res ; 187: 106568, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423787

RESUMEN

The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.


Asunto(s)
Carcinogénesis , MicroARNs , Neoplasias , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Relevancia Clínica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Environ Res ; 232: 116302, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286125

RESUMEN

Neurogenesis is decreased in the absence of nerve growth factor (NGF). It would be beneficial to discover substances that stimulate neurogenesis without NGF, given the high molecular weight and brief half-life of NGF. This work aims to assess the neurogenesis of ginger extract (GE) combined with superparamagnetic iron oxide nanoparticles (SPIONs) without NGF. Based on our research, GE and SPIONs start neurogenesis before NGF. In comparison to the control group, GE and SPIONs dramatically reduced the length and quantity of neurites, according to statistical analysis. Our findings also indicated that SPIONs and ginger extract together had an additive impact on one another. The total number significantly increased with the addition of GE and nanoparticles. In comparison to NGF, the mixture of GE and nanoparticles significantly enhanced the total number of cells with neurites (by about 1.2-fold), the number of branching points (by about 1.8-fold), and the length of neurites. The difference between ginger extract and nanoparticles with NGF was significant (about 3.5-fold), particularly in the case of cells with one neurite. The results of this study point to the possibility of treating neurodegenerative disorders via the combination of GE and SPIONs without NGF.


Asunto(s)
Dextranos , Factor de Crecimiento Nervioso , Ratas , Animales , Células PC12 , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal , Nanopartículas Magnéticas de Óxido de Hierro
12.
Environ Res ; 226: 115694, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933638

RESUMEN

The annual growth of water pollution resulting from the uncontrolled entry of heavy metals, like Pb2+ ions, is one of the most critical global concerns due to its direct and indirect effects on human life. The absorption of this component by the body could affect the nervous system via oxidative stress production or disturbing cellular biological mechanism. So, it is important to find an effective method for purifying the existing waters. This study aims to fabricate and compare the effect of two new nano-adsorbents (Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8) on removing Pb2+ ions from the aqueous solution. Accordingly, iron oxide nanoparticles were synthesized via co-precipitation method at first and then coated with a silica shell through the sol-gel method. Both nanoparticles were coated with a layer of metal-organic framework (MOF), ZIF-8, and analyzed with different physicochemical tests. In the following parts, the Pb2+ ion removal capability of the nano-adsorbents was evaluated in the presence of different parameters, including nanosorbent concentrations, contact time, pH, and pollutant concentrations. Results confirmed preparation of nanoparticles with a mean size of about 110 ± 10 nm and 80 ± 10 nm for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. Both nanoparticles showed the highest amount of pollutants removal (near 90% for both nanoparticles) at pH = 6 within 15 min of contact in the presence of 100 ppm Pb2+ ions. Besides, in the case of real samples, with a concentration of about 150 ppm of Pb2+ ions, they showed maximum adsorption of about 93.61% and 99.2% for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. The presence of iron oxide nanoparticles in the structure of this adsorbent makes it easy to separate them in a user-friendly method. A brief comparison between these nanosorbents indicates that Fe3O4@SiO2@ZIF-8 nanoparticles have better performance due to their higher porosity and surface area ratio and so it could be used as a cost-effective ideal nanosorbent candidate for easy removal of heavy metals from water.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Nanopartículas , Contaminantes Químicos del Agua , Humanos , Dióxido de Silicio/química , Plomo , Agua , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis , Cinética
13.
Environ Res ; 231(Pt 1): 116115, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178752

RESUMEN

Exosomes are small extracellular vesicles that can be derived from human cells such as mesenchymal stem cells (MSCs). The size of exosomes is at nano-scale range and owing to their biocompatibility and other characteristics, they have been promising candidates for delivery of bioactive compounds and genetic materials in disease therapy, especially cancer therapy. Gastric cancer (GC) is a leading cause of death among patients and this malignant disease affects gastrointestinal tract that its invasiveness and abnormal migration mediate poor prognosis of patients. Metastasis is an increasing challenge in GC and microRNAs (miRNAs) are potential regulators of metastasis and related molecular pathways, especially epithelial-to-mesenchymal transition (EMT). In the present study, our aim was to explore role of exosomes in miR-200a delivery for suppressing EMT-mediated GC metastasis. Exosomes were isolated from MSCs via size exclusion chromatography. The synthetic miR-200a mimics were transfected into exosomes via electroporation. AGS cell line exposed to TGF-ß for EMT induction and then, these cells cultured with miR-200a-loaded exosomes. The transwell assays performed to evaluate GC migration and expression levels of ZEB1, Snail1 and vimentin measured. Exosomes demonstrated loading efficiency of 5.92 ± 4.6%. The TGF-ß treatment transformed AGS cells into fibroblast-like cells expressing two stemness markers, CD44 (45.28%) and CD133 (50.79%) and stimulated EMT. Exosomes induced a 14.89-fold increase in miR-200a expression in AGS cells. Mechanistically, miR-200a enhances E-cadherin levels (P < 0.01), while it decreases expression levels of ß-catenin (P < 0.05), vimentin (P < 0.01), ZEB1 (P < 0.0001) and Snail1 (P < 0.01), leading to EMT inhibition in GC cells. This pre-clinical experiment introduces a new strategy for miR-200a delivery that is of importance for preventing migration and invasion of GC cells.


Asunto(s)
Exosomas , MicroARNs , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta , Exosomas/metabolismo , Vimentina , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
14.
Environ Res ; 228: 115914, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062475

RESUMEN

Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.


Asunto(s)
Cannabinoides , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endocannabinoides/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico , Cannabinoides/uso terapéutico , Línea Celular Tumoral
15.
Cell Mol Life Sci ; 79(11): 539, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36194371

RESUMEN

Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Estilbenos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisplatino/farmacología , Docetaxel , Doxorrubicina/farmacología , Femenino , Humanos , Paclitaxel , Polifenoles/farmacología , Resveratrol/farmacología , Resveratrol/uso terapéutico , Estilbenos/farmacología , Estilbenos/uso terapéutico , Microambiente Tumoral , Agua
16.
Mikrochim Acta ; 190(1): 44, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602637

RESUMEN

Integrated polyurethane (PU)-based foams modified with PEGylated graphene oxide and folic acid (PU@GO-PEG-FA) were developed with the goal of capturing and detecting tumor cells with precision. The detection of the modified PU@GO-PEG surface through FA against folate receptor-overexpressed tumor cells is the basis for tumor cell capture. Molecular dynamics (MD) simulations were applied to study the strength of FA interactions with the folate receptor. Based on the obtained results, the folate receptor has intense interactions with FA, which leads to the reduction in the FA interactions with PEG, and so decreases the fluorescence intensity of the biosensor. The synergistic interactions offer the FA-modified foams a high efficiency for capturing the tumor cell. Using a turn-off fluorescence technique based on the complicated interaction of FA-folate receptor generated by target recognition, the enhanced capture tumor cells could be directly read out at excitation-emission wavelengths of 380-450 nm. The working range is between 1×10 2 to 2×10 4 cells mL -1 with a detection limit of 25 cells mL -1 and good reproducibility with relative standard deviation of 2.35%. Overall, findings demonstrate that the fluorescence-based biosensor has a significant advantage for early tumor cell diagnosis.


Asunto(s)
Ácido Fólico , Poliuretanos , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados
17.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834707

RESUMEN

The COVID-19 pandemic showed the crucial significance of investing in and conducting research on infectious diseases [...].


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Pandemias
18.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047252

RESUMEN

The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals' set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms "Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms". It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients' laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.


Asunto(s)
Ritmo Circadiano , Ritmo Ultradiano , Humanos , Ritmo Circadiano/fisiología
19.
J Cell Physiol ; 237(7): 2770-2795, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561232

RESUMEN

Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-ß, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.


Asunto(s)
Transición Epitelial-Mesenquimal , FN-kappa B , Animales , Línea Celular Tumoral , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
20.
J Cell Physiol ; 237(1): 450-465, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569616

RESUMEN

Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , ARN Largo no Codificante , Carcinogénesis , Resistencia a Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/uso terapéutico , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA