RESUMEN
Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.
Asunto(s)
Nanovirus , Vicia faba , Nanovirus/genética , Proteínas de la Cápside/genética , Vicia faba/genética , ADN Viral/genética , Virión/genética , Genoma Viral , MutagénesisRESUMEN
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Asunto(s)
Áfidos , Genoma Viral , Interacciones Microbiota-Huesped , Insectos Vectores , Nanovirus , Vicia faba , Animales , Áfidos/virología , Genoma Viral/genética , Insectos Vectores/virología , Nanovirus/genética , Enfermedades de las Plantas/virología , Transporte de Proteínas , Transporte de ARN , ARN Viral/genética , ARN Viral/metabolismo , Vicia faba/virología , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (here named SCSA 1) on various important traits of Faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation, and viral transmission. The results indicate that SCSA 1 does not affect the severity of symptoms nor overall FBNYV accumulation in V. faba, but it does change the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to the simple increase of viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. IMPORTANCE Alphasatellites are circular single-stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruses, the two ssDNA plant-infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here, we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, Faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both the plant and the vector. We also confirm that although within-plant virus load and symptoms are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load but significantly increases virus transmission rate, and thus it may confer a possible evolutionary advantage for the helper virus.
Asunto(s)
ADN Viral , Genoma Viral , Genómica , Nanovirus/fisiología , Enfermedades de las Plantas/virología , Replicación Viral , Genómica/métodos , Estadios del Ciclo de Vida , Virus de Plantas/fisiología , Vicia faba/virología , Carga ViralRESUMEN
Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.
Asunto(s)
Áfidos/virología , Nanovirus/metabolismo , Animales , Virus ADN/genética , Geminiviridae/genética , Hibridación Fluorescente in Situ/métodos , Insectos Vectores/metabolismo , Insectos Vectores/virología , Luteoviridae/genética , Nanovirus/patogenicidad , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Proteínas Virales/genética , Virión/genéticaRESUMEN
UNLABELLED: Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE: A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.
Asunto(s)
Áfidos/virología , Insectos Vectores/virología , Modelos Biológicos , Nanovirus/genética , Enfermedades de las Plantas/virología , Vicia faba/virología , Virosis/transmisión , Animales , Cartilla de ADN/genética , Nanovirus/fisiología , Reacción en Cadena de la PolimerasaRESUMEN
Multipartite viruses exhibit a fragmented genome composed of several nucleic acid segments individually packaged in distinct viral particles. The genome of all species of the genus Nanovirus holds eight segments, which accumulate at a very specific and reproducible relative frequency in the host plant tissues. In a given host species, the steady state pattern of the segments' relative frequencies is designated the genome formula and is thought to have an adaptive function through the modulation of gene expression. Nanoviruses are aphid-transmitted circulative non-propagative viruses, meaning that the virus particles are internalized into the midgut cells, transferred to the hemolymph, and then to the saliva, with no replication during this transit. Unexpectedly, a previous study on the faba bean necrotic stunt virus revealed that the genome formula changes after ingestion by aphids. We investigate here the possible mechanism inducing this change by first comparing the relative segment frequencies in different compartments of the aphid. We show that changes occur both in the midgut lumen and in the secreted saliva but not in the gut, salivary gland, or hemolymph. We further establish that the viral particles differentially resist physicochemical variations, in particular pH, ionic strength, and/or type of salt, depending on the encapsidated segment. We thus propose that the replication-independent genome formula changes within aphids are not adaptive, contrary to changes occurring in plants, and most likely reflect a fortuitous differential degradation of virus particles containing distinct segments when passing into extra-cellular media such as gastric fluid or saliva. IMPORTANCE: The genome of multipartite viruses is composed of several segments individually packaged into distinct viral particles. Each segment accumulates at a specific frequency that depends on the host plant species and regulates gene expression. Intriguingly, the relative frequencies of the genome segments also change when the octopartite faba bean necrotic stunt virus (FBNSV) is ingested by aphid vectors, despite the present view that this virus travels through the aphid gut and salivary glands without replicating. By monitoring the genomic composition of FBNSV populations during the transit in aphids, we demonstrate here that the changes take place extracellularly in the gut lumen and in the saliva. We further show that physicochemical factors induce differential degradation of viral particles depending on the encapsidated segment. We propose that the replication-independent changes within the insect vector are not adaptive and result from the differential stability of virus particles containing distinct segments according to environmental parameters.
Asunto(s)
Áfidos , Genoma Viral , Insectos Vectores , Nanovirus , Replicación Viral , Áfidos/virología , Animales , Genoma Viral/genética , Nanovirus/genética , Nanovirus/fisiología , Insectos Vectores/virología , Saliva/virología , Enfermedades de las Plantas/virología , Virión/genética , Vicia faba/virología , Hemolinfa/virologíaRESUMEN
The Guatemala potato tuber moth Tecia solanivora (Povolny) (Lep. Gelechiidae) is an invasive species from Mesoamerica that has considerably extended its distribution area in recent decades. While this species is considered to be a major potato pest in Venezuela, Colombia, and Ecuador, currently no specific control methods are available for farmers. To address this issue we developed a biopesticide formulation to be used in integrated pest management of T. solanivora, following three steps. First, search for entomopathogenic viruses were carried out through extensive bioprospections in 12 countries worldwide. As a result, new Phthorimaea operculella granulovirus (PhopGV) isolates were found in T. solanivora and five other gelechid species. Second, twenty PhopGV isolates, including both previously known and newly found isolates, were genetically and/or biologically characterized in order to choose the best candidate for a biopesticide formulation. Sequence data were obtained for the ecdysteroid UDP-glucosyltransferase (egt) gene, a single copy gene known to play a role in pathogenicity. Three different sizes (1086, 1305 and 1353 bp) of egt were found among the virus isolates analyzed. Unexpectedly, no obvious correlation between egt size and pathogenicity was found. Bioassays on T. solanivora neonates showed a maximum of a 14-fold difference in pathogenicity among the eight PhopGV isolates tested. The most pathogenic PhopGV isolate, JLZ9f, had a medium lethal concentration (LC(50)) of 10 viral occlusion bodies per square mm of consumed tuber skin. Third, we tested biopesticide dust formulations by mixing a dry carrier (calcium carbonate) with different adjuvants (magnesium chloride or an optical brightener or soya lecithin) and different specific amounts of JLZ9f. During laboratory experiments, satisfactory control of the pest (>98% larva mortality compared to untreated control) was achieved with a formulation containing 10 macerated JLZ9f-dead T. solanivora larvae per kg of calcium carbonate mixed with 50 mL/kg of soya lecithin. The final product provides an interesting alternative to chemical pesticides for Andean farmers affected by this potato pest.
Asunto(s)
Granulovirus/patogenicidad , Insecticidas , Mariposas Nocturnas/virología , Control Biológico de Vectores/métodos , Solanum tuberosum/parasitología , Animales , Bioensayo , Glucosiltransferasas/genética , Granulovirus/enzimología , Granulovirus/genética , Mariposas Nocturnas/fisiologíaRESUMEN
The Guatemalan potato moth Tecia solanivora (Povolny) recently invaded part of South America, colonizing zones where Phthorimaea operculella (Zeller), another potato moth species belonging to the same group, was previously established. T. solanivora is now the major insect pest of potato in this area encompassing Venezuela, Colombia and Ecuador. P. operculella granulovirus (PhopGV) (Betabaculovirus) is a biocontrol agent to be considered for the simultaneous management of these two potato pests, instead of classical chemical insecticides. In a previous work, five PhopGV isolates were isolated in Colombia from T. solanivora and were tested against larvae of the same species showing variable efficacies. Infections with mixtures of different genotypes of Baculoviruses had been carried out in a wide range of species and several showed interesting results. In the present study, the effect of sequential passages of PhopGV in P. operculella and T. solanivora larvae was analyzed through biological assays. Three different mixtures containing a Peruvian PhopGV isolate (Peru) adapted to P. operculella and a Colombian PhopGV isolate (VG003) adapted to T. solanivora were tested. A preliminary analysis of the correlation between the genotypic marker egt gene and the level of pathogenicity after a variable number of replication cycles was made. Mixtures of virus isolates showed a higher efficacy in both hosts compared to individual PhopGV isolates. This higher pathogenicity was maintained through passages. In P. operculella the mixtures were between 2.8 and 23.6-fold (from 7.15 OB/mm(2) to 0.10 OB/mm(2)) more pathogenic than isolate Peru applied alone. In T. solanivora they were between 2.3 and 4.9-fold (from 12.29 OB/mm(2) to 1.25 OB/mm(2)) more pathogenic than isolate VG003 alone. Viral biopesticide containing a mixture of selected genotypes active against each hosts seemed suitable for the development of a biopesticide aimed to simultaneously control P. operculella and T. solanivora.
Asunto(s)
Granulovirus/patogenicidad , Virus de Insectos/aislamiento & purificación , Lepidópteros/virología , Animales , Bioensayo , Proteínas de Ciclo Celular/genética , ADN Viral/genética , Variación Genética , Granulovirus/genética , Virus de Insectos/genética , Insecticidas , Larva/virología , Lepidópteros/fisiología , Dosificación Letal Mediana , Control Biológico de Vectores , Pase SeriadoRESUMEN
Multipartite viruses have a segmented genome, with each segment encapsidated separately. In all multipartite virus species for which the question has been addressed, the distinct segments reproducibly accumulate at a specific and host-dependent relative frequency, defined as the 'genome formula'. Here, we test the hypothesis that the multipartite genome organization facilitates the regulation of gene expression via changes of the genome formula and thus via gene copy number variations. In a first experiment, the faba bean necrotic stunt virus (FBNSV), whose genome is composed of eight DNA segments each encoding a single gene, was inoculated into faba bean or alfalfa host plants, and the relative concentrations of the DNA segments and their corresponding messenger RNAs (mRNAs) were monitored. In each of the two host species, our analysis consistently showed that the genome formula variations modulate gene expression, the concentration of each genome segment linearly and positively correlating to that of its cognate mRNA but not of the others. In a second experiment, twenty parallel FBNSV lines were transferred from faba bean to alfalfa plants. Upon host switching, the transcription rate of some genome segments changes, but the genome formula is modified in a way that compensates for these changes and maintains a similar ratio between the various viral mRNAs. Interestingly, a deep-sequencing analysis of these twenty FBNSV lineages demonstrated that the host-related genome formula shift operates independently of DNA-segment sequence mutation. Together, our results indicate that nanoviruses are plastic genetic systems, able to transiently adjust gene expression at the population level in changing environments, by modulating the copy number but not the sequence of each of their genes.
RESUMEN
Tecia solanivora (Lepidoptera: Gelechiidae) is an invasive potato pest of the north of South America that recently colonized zones where Phthorimaea operculella (Lepidoptera: Gelechiidae), a taxonomically related insect, was established. Nowadays, both species can be found in most areas in different proportions. The Phthorimaea operculella granulovirus (PhopGV) was found to efficiently control P. operculella and was used as a biopesticide in storage conditions. However, no appropriate biological control methods exist for T. solanivora, and the use of granulovirus isolates would provide a solution. The Colombian Corporation for Agricultural Research (CORPOICA) carried out several T. solanivora larva samplings in Colombia with the aim of finding potential isolates. Five geographical granulovirus isolates from T. solanivora (VG001, VG002, VG003, VG004, and VG005) were found, and molecular analysis by REN profiles shows three different genotypic variants in Colombia. Analysis of their genomes revealed their relatedness to PhopGV. Two isolates exhibited submolar bands in their REN patterns, suggesting a mixture of viral genotypes. These data were confirmed by PCR amplification and sequencing of particular regions of the viral genomes. Their biological activity was assayed on both hosts, T. solanivora and P. operculella. A significantly higher pathogenicity in both hosts was observed with isolates VG001 and VG005 than with isolate VG003 or a Peruvian isolate (from P. operculella) used as a reference in the bioassay. Based on their molecular and biological activity characteristics, VG001 and VG005 isolates should be selected for further analysis in order to establish their potential as biological control agents.
Asunto(s)
Granulovirus/clasificación , Granulovirus/aislamiento & purificación , Lepidópteros/virología , Animales , Análisis por Conglomerados , Colombia , ADN Viral/química , ADN Viral/genética , Genotipo , Granulovirus/genética , Larva/virología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Análisis de Secuencia de ADNRESUMEN
Single-stranded DNA (ssDNA) plant viruses belong to the families Geminiviridae and Nanoviridae. They are transmitted by Hemipteran insects in a circulative, mostly non-propagative, manner. While geminiviruses are transmitted by leafhoppers, treehoppers, whiteflies and aphids, nanoviruses are transmitted exclusively by aphids. Circulative transmission involves complex virus-vector interactions in which epithelial cells have to be crossed and defense mechanisms counteracted. Vector taxa are considered a relevant taxonomic criterion for virus classification, indicating that viruses can evolve specific interactions with their vectors. Thus, we predicted that, although nanoviruses and geminiviruses represent related viral families, they have evolved distinct interactions with their vector. This prediction is also supported by the non-structural Nuclear Shuttle Protein (NSP) that is involved in vector transmission in nanoviruses but has no similar function in geminiviruses. Thanks to the recent discovery of aphid-transmitted geminiviruses, this prediction could be tested for the geminivirus alfalfa leaf curl virus (ALCV) and the nanovirus faba bean necrotic stunt virus (FBNSV) in their common vector, Aphis craccivora. Estimations of viral load in midgut and head of aphids, precise localization of viral DNA in cells of insect vectors and host plants, and virus transmission tests revealed that the pathway of the two viruses across the body of their common vector differs both quantitatively and qualitatively.
Asunto(s)
Áfidos/virología , Coinfección , Geminiviridae/fisiología , Insectos Vectores/virología , Nanovirus/fisiología , Animales , ADN Viral , Geminiviridae/clasificación , Hibridación Fluorescente in Situ , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Nanovirus/clasificación , Fenotipo , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Saliva/virologíaRESUMEN
The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles. We present here the cryo-electron microscopy reconstruction of the BBSV and an atomic model of the capsid proteins refined at 3.22â¯Å resolution. We identified residues involved in RNA/capsid interactions revealing a unique RNA genome organization. Inspection of the small coat protein C-terminal domain highlights a maturation cleavage between Leu567 and Leu568 and interactions of the C-terminal stretch with neighbouring small coat proteins within the capsid pentameric turrets. These interactions previously proposed to play a key role in the assembly of the Cowpea mosaic virus suggest a common capsid assembly mechanism throughout all comovirus species.
Asunto(s)
Cápside/metabolismo , Cápside/ultraestructura , Comovirus/fisiología , Comovirus/ultraestructura , Microscopía por Crioelectrón , Ensamble de Virus , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Modelos Moleculares , Unión Proteica , ARN Viral/metabolismoRESUMEN
A small isometric virus has been isolated from larvae of the Guatemala potato tuber moth, Tecia solanivora (Povolny), collected in Ecuador. It was designated the Anchilibi virus (AnchV). The non-enveloped viral particles have an estimated diameter of 32+/-2 nm. Three major proteins were found in virions, with estimated sizes of 102.0+/-2.1, 95.8+/-2.0 and 92.4+/-1.5 kDa for AnchV as determined by polyacrylamide gel electrophoresis. After denaturing agarose gel electrophoresis, the genome of AnchV appeared to be a tri-segmented single-stranded RNA with fragment sizes of 4.1+/-0.2, 2.8+/-0.2 and 1.65+/-0.2 kb. In addition to a high virulence towards its original host, AnchV also caused high mortality in larvae of two other potato tuber moth species, Phthorimaea operculella (Zeller) and Symmetrischema (tangolias) plaesiosema (Turner). Electron microscopy confirmed that AnchV replication occurs in the cell cytoplasm, mainly in vesicles. Several important characteristics exhibited by this virus differ from those reported for known families of insect viruses. Thus, AnchV might be member of a new taxonomic group.
Asunto(s)
Virus de Insectos/clasificación , Virus de Insectos/genética , Virus de Insectos/patogenicidad , Mariposas Nocturnas/virología , ARN Viral/genética , Animales , Electroforesis en Gel de Poliacrilamida , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/patogenicidadRESUMEN
Template-dependent polynucleotide synthesis is catalyzed by enzymes whose core component includes a ubiquitous alphabeta palm subdomain comprising A, B and C sequence motifs crucial for catalysis. Due to its unique, universal conservation in all RNA viruses, the palm subdomain of RNA-dependent RNA polymerases (RdRps) is widely used for evolutionary and taxonomic inferences. We report here the results of elaborated computer-assisted analysis of newly sequenced replicases from Thosea asigna virus (TaV) and the closely related Euprosterna elaeasa virus (EeV), insect-specific ssRNA+ viruses, which revise a capsid-based classification of these viruses with tetraviruses, an Alphavirus-like family. The replicases of TaV and EeV do not have characteristic methyltransferase and helicase domains, and include a putative RdRp with a unique C-A-B motif arrangement in the palm subdomain that is also found in two dsRNA birnaviruses. This circular motif rearrangement is a result of migration of approximately 22 amino acid (aa) residues encompassing motif C between two internal positions, separated by approximately 110 aa, in a conserved region of approximately 550 aa. Protein modeling shows that the canonical palm subdomain architecture of poliovirus (ssRNA+) RdRp could accommodate the identified sequence permutation through changes in backbone connectivity of the major structural elements in three loop regions underlying the active site. This permutation transforms the ferredoxin-like beta1alphaAbeta2beta3alphaBbeta4 fold of the palm subdomain into the beta2beta3beta1alphaAalphaBbeta4 structure and brings beta-strands carrying two principal catalytic Asp residues into sequential proximity such that unique structural properties and, ultimately, unique functionality of the permuted RdRps may result. The permuted enzymes show unprecedented interclass sequence conservation between RdRps of true ssRNA+ and dsRNA viruses and form a minor, deeply separated cluster in the RdRp tree, implying that other, as yet unidentified, viruses may employ this type of RdRp. The structural diversification of the palm subdomain might be a major event in the evolution of template-dependent polynucleotide polymerases in the RNA-protein world.
Asunto(s)
Virus de Insectos/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Birnaviridae/enzimología , Dominio Catalítico , Secuencia Conservada , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Picornaviridae/enzimología , Conformación Proteica , Homología de Secuencia de AminoácidoRESUMEN
The Tetraviridae is a family of non-enveloped positive-stranded RNA insect viruses that is defined by the T=4 symmetry of virions. We report the complete Euprosterna elaeasa virus (EeV) genome sequence of 5698 nt with no poly(A) tail and two overlapping open reading frames, encoding the replicase and capsid precursor, with approximately 67% amino acid identity to Thosea asigna virus (TaV). The N-terminally positioned 17 kDa protein is released from the capsid precursor by a NPGP motif. EeV has 40 nm non-enveloped isometric particles composed of 58 and 7 kDa proteins. The 3'-end of TaV/EeV is predicted to form a conserved pseudoknot. Replicases of TaV and EeV include a newly delineated VPg signal mediating the protein priming of RNA synthesis in dsRNA Birnaviridae. Results of rooted phylogenetic analysis of replicase and capsid proteins are presented to implicate recombination between monopartite tetraviruses, involving autonomization of a sgRNA, in the emergence of bipartite tetraviruses. They are also used to revise the Tetraviridae taxonomy.