RESUMEN
PURPOSE: Progressive inherited retinal degenerations (IRDs) affecting rods and cones are clinically and genetically heterogeneous and can lead to blindness with limited therapeutic options. The major gene defects have been identified in subjects of European and Asian descent with only few reports of North African descent. METHODS: Genome, targeted next-generation, and Sanger sequencing was applied to cohort of â¼4000 IRDs cases. Expression analyses were performed including Chip-seq database analyses, on human-derived retinal organoids (ROs), retinal pigment epithelium cells, and zebrafish. Variants' pathogenicity was accessed using 3D-modeling and/or ROs. RESULTS: Here, we identified a novel gene defect with three distinct pathogenic variants in UBAP1L in 4 independent autosomal recessive IRD cases from Tunisia. UBAP1L is expressed in the retinal pigment epithelium and retina, specifically in rods and cones, in line with the phenotype. It encodes Ubiquitin-associated protein 1-like, containing a solenoid of overlapping ubiquitin-associated domain, predicted to interact with ubiquitin. In silico and in vitro studies, including 3D-modeling and ROs revealed that the solenoid of overlapping ubiquitin-associated domain is truncated and thus ubiquitin binding most likely abolished secondary to all variants identified herein. CONCLUSION: Biallelic UBAP1L variants are a novel cause of IRDs, most likely enriched in the North African population.
Asunto(s)
Distrofias de Conos y Bastones , Linaje , Pez Cebra , Adulto , Animales , Femenino , Humanos , Masculino , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/patología , Genes Recesivos , Mutación/genética , Fenotipo , Retina/patología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Túnez , Pez Cebra/genéticaRESUMEN
PURPOSE: To describe the clinical outcome and late-stage findings of extensive macular atrophy with pseudodrusen-like appearance (EMAP). DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-eight patients (156 eyes) affected by EMAP. METHODS: We collected data on best-corrected visual acuity, kinetic perimetry, OCT, short-wavelength autofluorescence, and near-infrared autofluorescence findings. Genetic testing for the TIMP3 and C1QTNF5 genes was performed via Sanger sequencing for 58 patients, with no pathogenic variants identified. MAIN OUTCOME MEASURES: The primary outcomes were best-corrected visual acuity at the last examination, visual field at the last examination, and incidence rates and time-to-event curves for blindness with the United States Social Security Administration and World Health Organization (WHO) criteria, foveal involvement, and atrophy enlargement beyond the 30° and 55° field of view. Imaging findings at the last examination were secondary outcomes. RESULTS: At the most recent visit, mean age was 70.9 ± 5.2 years. Using United States criteria, 58.1% of the patients were blind, and 25.8% were blind according to WHO criteria. All eyes showed large central scotomas, which were associated with visual field constriction in 22.2% of eyes. We detected focal openings or large dehiscences of Bruch's membrane (BM) in 25.4% of eyes. Near-infrared autofluorescence showed increased visibility of the choroidal vessels beyond the atrophy in 87.2% of eyes. The incidence rates for blindness were 3.95 per 100 patient-years with United States criteria and 1.54 per 100 patient-years according to WHO criteria. The incidence rates were 22.8 per 100 eye-years for foveal involvement, 12.0 per 100 eye-years for atrophy enlargement beyond 30°, and 6.6 per 100 eye-years for atrophy enlargement beyond 55°. The estimates were not influenced by the age at onset. CONCLUSIONS: We identified characteristic imaging findings, including BM ruptures, in elder patients with EMAP and calculated incidence rates for different functional and anatomic outcomes. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Asunto(s)
Progresión de la Enfermedad , Angiografía con Fluoresceína , Drusas Retinianas , Tomografía de Coherencia Óptica , Agudeza Visual , Campos Visuales , Humanos , Masculino , Femenino , Anciano , Agudeza Visual/fisiología , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Drusas Retinianas/diagnóstico , Drusas Retinianas/genética , Campos Visuales/fisiología , Angiografía con Fluoresceína/métodos , Persona de Mediana Edad , Pruebas del Campo Visual , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Degeneración Macular/fisiopatología , Mácula Lútea/patología , Atrofia , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Ceguera/diagnóstico , Ceguera/etiología , Ceguera/fisiopatología , Anciano de 80 o más Años , Escotoma/diagnóstico , Escotoma/fisiopatologíaRESUMEN
Usher syndrome (USH) is the most common cause of deafblindness. USH is autosomal recessively inherited and characterized by rod-cone dystrophy or retinitis pigmentosa (RP), often accompanied by sensorineural hearing loss. Variants in >15 genes have been identified as causative for clinically and genetically distinct subtypes. Among the ultra-rare and recently discovered genes is ARSG, coding for the lysosomal sulfatase Arylsulfatase G. This subtype was assigned as "USH IV" with a late onset of RP and usually late-onset progressive SNHL without vestibular involvement. Here, we describe nine new subjects and the clinical description of four cases with the USH IV phenotype bearing seven novel and two known pathogenic variants. Functional experiments indicated the complete loss of sulfatase enzymatic activity upon ectopic expression of mutated ARSG cDNA. Interestingly, we identified a homozygous missense variant, p.(Arg99His), previously described in dogs with neuronal ceroid lipofuscinosis. Our study expands the genetic landscape of ARSG-USH IV and the number of known subjects by more than 30%. These findings highlight that USH IV likely has been underdiagnosed and emphasize the need to test molecularly unresolved subjects with deafblindness syndrome. Finally, testing of ARSG should be considered for the genetic work-up of apparent isolated inherited retinal diseases.
RESUMEN
INTRODUCTION: The purpose of this project was to explore the current standards of clinical care genetic testing and counseling for patients with inherited retinal diseases (IRDs) from the perspective of leading experts in selected European countries. Also, to gather opinions on current bottlenecks and future solutions to improve patient care. METHODS: On the initiative of the European Vision Institute, a survey questionnaire with 41 questions was designed and sent to experts in the field from ten European countries. Each participant was asked to answer with reference to the situation in their own country. RESULTS: Sixteen questionnaires were collected by November 2023. IRD genetic tests are performed in clinical care settings for 80% or more of tested patients in 9 countries, and the costs of genetic tests in clinical care are covered by the public health service to the extent of 90% or more in 8 countries. The median proportion of patients who are genetically tested, the median rate of genetically solved patients among those who are tested, and the median proportion of patients receiving counseling are 51-70%, 61-80%, and 61-80%, respectively. Improving the education of healthcare professionals who facilitate patient referrals to specialized centers, improving access of patients to more thorough genotyping, and increasing the number of available counselors were the most advocated solutions. CONCLUSION: There is a significant proportion of IRD patients who are not genetically tested, whose genetic testing is inconclusive, or who do not receive counseling. Educational programs, greater availability of state-of-the-art genotyping and genetic counselors could improve healthcare for IRD patients.
Asunto(s)
Pruebas Genéticas , Enfermedades de la Retina , Humanos , Pruebas Genéticas/métodos , Europa (Continente) , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Encuestas y Cuestionarios , Asesoramiento GenéticoRESUMEN
Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.
Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Proteínas de Unión al GTP/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación con Pérdida de Función , Miopía/genética , Proteínas del Tejido Nervioso/genética , Ceguera Nocturna/genética , Adulto , Alelos , Empalme Alternativo , Encéfalo/metabolismo , Línea Celular , Niño , Preescolar , Diagnóstico Diferencial , Salud de la Familia , Femenino , Francia , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Glucosa/metabolismo , Humanos , Secreción de Insulina , Masculino , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo , Linaje , Retina/metabolismo , Arabia Saudita , SenegalRESUMEN
Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.
Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Bipolares de la Retina/metabolismoRESUMEN
Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.
Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Ratones , Animales , Electrorretinografía/métodos , Ceguera Nocturna/genética , Retina , Miopía/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Receptores Acoplados a Proteínas G/genéticaRESUMEN
Inherited retinal diseases (IRD) are a group of heterogeneous disorders, most of which lead to blindness with limited therapeutic options. Pathogenic variants in RBP4, coding for a major blood carrier of retinol, retinol-binding protein 4, are responsible for a peculiar form of IRD. The aim of this study was to investigate if retinal function of an RBP4-related IRD patient can be improved by retinol administration. Our patient presented a peculiar white-dot retinopathy, reminiscent of vitamin A deficient retinopathy. Using a customized next generation sequencing (NGS) IRD panel we discovered a novel loss-of-function homozygous pathogenic variant in RBP4: c.255G >A, p.(Trp85*). Western blotting revealed the absence of RBP4 protein in the patient's serum. Blood retinol levels were undetectable. The patient was put on a high-dose oral retinol regimen (50,000 UI twice a week). Subjective symptoms and retinal function markedly and sustainably improved at 5-months and 1-year follow-up. Here we show that this novel IRD case can be treated by oral retinol administration.
Asunto(s)
Distrofias Retinianas , Vitamina A , Humanos , Retina/metabolismo , Distrofias Retinianas/tratamiento farmacológico , Distrofias Retinianas/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/uso terapéuticoRESUMEN
Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.
Asunto(s)
Distrofias de Conos y Bastones , Proteínas del Ojo , Retinitis Pigmentosa , Distrofias de Conos y Bastones/genética , Proteínas del Ojo/genética , Genes Reguladores , Humanos , Estudios Longitudinales , Mutación , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Estudios RetrospectivosRESUMEN
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Coroideremia , Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/diagnóstico , Coroideremia/genética , Coroideremia/terapia , Exones , Femenino , Heterocigoto , Humanos , Masculino , MutaciónRESUMEN
Cyclic nucleotide-gated channel ß1 (CNGB1) encodes the 240-kDa ß subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Asunto(s)
Distrofias de Conos y Bastones/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Estudios de Cohortes , Distrofias de Conos y Bastones/clasificación , Distrofias de Conos y Bastones/epidemiología , Distrofias de Conos y Bastones/patología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , MutaciónRESUMEN
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Asunto(s)
Enfermedades Hereditarias del Ojo , Quinasa 1 del Receptor Acoplado a Proteína-G , Ceguera Nocturna , Enfermedades Hereditarias del Ojo/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Humanos , Ceguera Nocturna/genéticaRESUMEN
Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.
Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40RESUMEN
PURPOSE: To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina. METHODS: The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts. The cellular expression of ITM2B within the inner retina was investigated in wild-type mice through mRNA in situ hybridization. RESULTS: All patients complained of decreased vision and mild photophobia around their twenties-thirties. The peculiar feature was the hyperreflective material on optical coherence tomography within the inner retina and the central outer nuclear layer with thinning of the retinal nerve fiber layer. Although retinal imaging revealed very mild or no changes over the years, the visual acuity slowly decreased with about one Early Treatment Diabetic Retinopathy Study letter per year. Finally, full-field electroretinography showed a mildly progressive inner retinal and cone dysfunction. ITM2B mRNA is expressed in all cellular types of the inner retina. Disease mechanism most likely involves mutant protein misfolding and/or modified protein interaction rather than misplicing. CONCLUSION: ITM2B-related retinal dystrophy is a peculiar, rare, slowly progressive retinal degeneration. Functional examinations (full-field electroretinography and visual acuity) seem more accurate in monitoring the progression in these patients because imaging tends to be stable over the years.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Distrofias Retinianas/genética , Anciano , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Imagen Óptica , Fenotipo , ARN Mensajero/genética , Retina/fisiopatología , Distrofias Retinianas/diagnóstico por imagen , Distrofias Retinianas/fisiopatología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Agudeza Visual/fisiologíaRESUMEN
Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.
Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Miopía/genética , Miopía/patología , Ceguera Nocturna/genética , Ceguera Nocturna/patología , Receptores Acoplados a Proteínas G/fisiología , Retina/patología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Retina/metabolismo , Transducción de SeñalRESUMEN
Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.
Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Enfermedades Hereditarias del Ojo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación/genética , Distrofias Retinianas/genética , Adulto , Anciano , Niño , Puntos de Rotura del Cromosoma , Simulación por Computador , Distrofias de Conos y Bastones/fisiopatología , Variaciones en el Número de Copia de ADN/genética , Electrorretinografía , Enfermedades Hereditarias del Ojo/fisiopatología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Distrofias Retinianas/fisiopatologíaRESUMEN
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , FenotipoRESUMEN
Inherited retinal diseases (IRDs) cause visual loss due to dysfunction or progressive degeneration of photoreceptors. These diseases show marked phenotypic and genetic heterogeneity. The Israeli IRD consortium (IIRDC) was established in 2013 with the goal of performing clinical and genetic mapping of the majority of Israeli IRD patients. To date, we recruited 2,420 families including 3,413 individuals with IRDs. On the basis of our estimation, these patients represent approximately 40% of Israeli IRD patients. To the best of our knowledge, this is, by far, the largest reported IRD cohort, and one of the first studies addressing the genetic analysis of IRD patients on a nationwide scale. The most common inheritance pattern in our cohort is autosomal recessive (60% of families). The most common retinal phenotype is retinitis pigmentosa (43%), followed by Stargardt disease and cone/cone-rod dystrophy. We identified the cause of disease in 56% of the families. Overall, 605 distinct mutations were identified, of which 12% represent prevalent founder mutations. The most frequently mutated genes were ABCA4, USH2A, FAM161A, CNGA3, and EYS. The results of this study have important implications for molecular diagnosis, genetic screening, and counseling, as well as for the development of new therapeutic strategies for retinal diseases.
Asunto(s)
Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Enfermedades de la Retina/epidemiología , Enfermedades de la Retina/genética , Alelos , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Electrorretinografía , Efecto Fundador , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas , Geografía Médica , Humanos , Patrón de Herencia , Israel/epidemiología , Mutación , Vigilancia de la Población , Enfermedades de la Retina/diagnóstico , Secuenciación Completa del GenomaRESUMEN
PURPOSE: To document the rod-cone dystrophy phenotype of patients with Usher syndrome type 1 (USH1) harboring MYO7A mutations. METHODS: Retrospective cohort study of 53 patients (42 families) with biallelic MYO7A mutations who underwent comprehensive examination, including functional visual tests and multimodal retinal imaging. Genetic analysis was performed either using a multiplex amplicon panel or through direct sequencing. Data were analyzed with IBM SPSS Statistics software v. 21.0. RESULTS: Fifty different genetic variations including 4 novel were identified. Most patients showed a typical rod-cone dystrophy phenotype, with best-corrected visual acuity and central visual field deteriorating linearly with age. At age 29, binocular visual field demonstrated an average preservation of 50 central degrees, constricting by 50% within 5 years. Structural changes based on spectral domain optical coherence tomography, short wavelength autofluorescence, and near-infrared autofluorescence measurements did not however correlate with age. Our study revealed a higher percentage of epiretinal membranes and cystoid macular edema in patients with MYO7A mutations compared with rod-cone dystrophy patients with other mutations. Subgroup analyses did not reveal substantial genotype-phenotype correlations. CONCLUSION: To the best of our knowledge, this is the largest French cohort of patients with MYO7A mutations reported to date. Functional visual characteristics of this subset of patients followed a linear decline as in other typical rod-cone dystrophy, but structural changes were variable indicating the need for a case-by-case evaluation for prognostic prediction and choice of potential therapies.
Asunto(s)
Distrofias de Conos y Bastones/genética , Mutación , Miosina VIIa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Niño , Preescolar , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/fisiopatología , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Francia , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Síndromes de Usher/diagnóstico , Síndromes de Usher/fisiopatología , Agudeza Visual/fisiología , Pruebas del Campo Visual , Campos Visuales/fisiología , Adulto JovenRESUMEN
Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.