Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 945
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2311552, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501866

RESUMEN

The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3 O1 coordination, and Fe-N3 O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1 , and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1 O2 and Fe(IV)═O induced at the Fe-N3 O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.

2.
Environ Res ; 246: 118200, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220077

RESUMEN

Organic polymers hold great potential in photocatalysis considering their low cost, structural tailorability, and well-controlled degree of conjugation for efficient electron transfer. Among the polymers, Schiff base networks (SNWs) with high nitrogen content have been noticed. Herein, a series of SNWs is synthesized based on the melamine units and dialdehydes with different bonding sites. The chemical and structural variation caused by steric hindrance as well as the related photoelectric properties of the SNW samples are investigated, along with the application exploration on photocatalytic degradation and energy production. The results demonstrate that only SNW-o based on o-phthalaldehyde responds to visible light, which extends to over 550 nm. SNW-o shows the highest tetracycline degradation rate of 0.02516 min-1, under 60-min visible light irradiation. Moreover, the H2O2 production of SNW-o is 2.14 times higher than that of g-C3N4. The enhanced photocatalytic activity could be ascribed to the enlarged visible light adsorption and intramolecular electron transfer. This study indicates the possibility to regulate the optical and electrical properties of organic photocatalysts on a molecular level, providing an effective strategy for rational supramolecular engineering to the applications of organic materials in photocatalysis.


Asunto(s)
Peróxido de Hidrógeno , Bases de Schiff , Luz , Antibacterianos , Polímeros
3.
Environ Sci Technol ; 57(7): 2726-2738, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36746765

RESUMEN

The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Animales , Nitrógeno/análisis , Nitratos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua , Ríos/química
4.
Angew Chem Int Ed Engl ; 62(20): e202300256, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36880746

RESUMEN

Catalyst-free visible light assisted Fenton-like catalysis offers opportunities to achieve the sustainable water decontamination, but the synergistic decontamination mechanisms are still unclear, especially the effect of proton transfer process (PTP). The conversion of peroxymonosulfate (PMS) in photosensitive dye-enriched system was detailed. The photo-electron transfer between excited dye and PMS triggered the efficient activation of PMS and enhanced the production of reactive species. Photochemistry behavior analysis and DFT calculations revealed that PTP was the crucial factor to determine the decontamination performance, leading to the transformation of dye molecules. The excitation process inducing activation of whole system was composed of low energy excitations, and the electrons and holes were almost contributed by LUMO and HOMO. This work provided new ideas for the design of catalyst-free sustainable system for efficient decontamination.

5.
J Transl Med ; 20(1): 96, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183197

RESUMEN

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor. E3 ligases play important functions in glioma pathogenesis. CRISPR system offers a powerful platform for genome manipulation, while the screen of E3 ligases in GBM still remains to be explored. Here, we first constructed an E3 ligase small guide RNA (sgRNAs) library for glioma cells growth screening. After four passages, 299 significantly enriched or lost genes (SELGs) were compared with the initial state. Then the clinical significance of SELGs were validated and analyzed with TCGA glioblastoma and CGGA datasets. As RNF185 showed lost signal, decreased expression and favorable prognostic significance, we chose RNF185 for functional analysis. In vitro overexpressed cellular phenotype showed that RNF185 was a tumor suppressor in two glioma cell lines. Finally, the molecular mechanism of decreased RNF185 expression was investigated and increased miR-587 expression and DNA hypermethylation was evaluated. This study would provide a link between the molecular basis and glioblastoma pathogenesis, and a novel perspective for glioblastoma treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Glioblastoma/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Environ Manage ; 317: 115437, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661878

RESUMEN

Biochar can achieve multiple benefits including solid waste management, polluted water remediation, carbon sequestration, and emission reduction. However, various environmental factors (such as temperature variations and dry-wet alternation) and microbial activity may lead to the fragmentation, dissolution, and oxidation of biochar. These accelerate the dissolution of biochar-derived dissolved organic matter (DOM) and then influence disinfection byproducts formation potential (DBPFP) throughout the water treatment process. In this paper, biochars from six biomass feedstocks with five aging processes were prepared, and the DBPFP of biochar and its derived DOM were first studied systematically. Different aging processes might increase the DBPFP of biochar by increasing DOM content and changing the fraction distribution of DOM derived from biochar. Especially, the DBPFP of biochar increased apparently with the chemical aging process. Coexisting with the environmental concentration of humic acid, even aged biochar showed the potential to reduce DBPFP and integrated toxic risk value of the mixed system. In this study, the DBPFP of biochar-derived DOM during the disinfection process is confirmed, and the results can give information to the selection of biomass feedstocks of biochar and its service life in the water treatment process.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Desinfección/métodos , Materia Orgánica Disuelta , Halogenación , Contaminantes Químicos del Agua/química
7.
J Environ Manage ; 316: 115218, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35580508

RESUMEN

Fenton oxidation is a widely used method for the fast and efficient treatment of contaminated sediment, but few studies have investigated the management of Fenton-treated sediment for resource utilization. In this study, the evolutionary characteristics of bacterial community composition in Fenton-treated riverine sediment were investigated using 16S rRNA gene sequencing after the incorporation of rice straw biochar and sheep manure compost. The Fenton treatment caused a decline in the relative abundance of Bacteroidetes from 39% to 8% on the 7th day, and using biochar and compost rapidly increased the relative abundance of Firmicutes from 13% to 61% and 57%, respectively. Applying 1.25 wt% biochar after the Fenton treatment contributed to high Shannon diversity indices of 4.80, 4.69, and 4.76 on the 7th, 28th, and 56th day, respectively. The reduced differences of Shannon indexes on the 56th day indicated that the bacterial diversity among different treatments tended to be similar over time. The genera Flavisolibacter and Bacillus were representatively detected on the 7th day in the untreated sediment and Fenton/biochar-treated sediment, respectively. The number of feature bacteria decreased significantly from 88 on the 7th day to 29 on the 56th day. The community functions for the carbon, nitrogen, and sulfur cycles were sensitive to the Fenton-treatment and the subsequent treatment with biochar and compost. This study may provide a useful reference for follow-up work on the remediation of contaminated sediment using advanced oxidation processes, and promote the development of resource utilization of amended sediment.


Asunto(s)
Compostaje , Animales , Bacterias/genética , Carbón Orgánico , Estiércol/microbiología , ARN Ribosómico 16S/genética , Ovinos/genética , Suelo
8.
Angew Chem Int Ed Engl ; 61(29): e202202338, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35514041

RESUMEN

Simultaneous regulation of the coordination environment of single-atom catalysts (SACs) and engineering architectures with efficient exposed active sites are efficient strategies for boosting peroxymonosulfate (PMS) activation. We isolated cobalt atoms with dual nitrogen and oxygen coordination (Co-N3 O1 ) on oxygen-doped tubular carbon nitride (TCN) by pyrolyzing a hydrogen-bonded cyanuric acid melamine-cobalt acetate precursor. The theoretically constructed Co-N3 O1 moiety on TCN exhibited an impressive mass activity of 7.61×105  min-1 mol-1 with high 1 O2 selectivity. Theoretical calculations revealed that the cobalt single atoms occupied a dual nitrogen and oxygen coordination environment, and that PMS adsorption was promoted and energy barriers reduced for the key *O intermediate that produced 1 O2 . The catalysts were attached to a widely used poly(vinylidene fluoride) microfiltration membrane to deliver an antibiotic wastewater treatment system with 97.5 % ciprofloxacin rejection over 10 hours, thereby revealing the suitability of the membrane for industrial applications.


Asunto(s)
Cobalto , Oxígeno , Cobalto/química , Nitrilos , Nitrógeno/química , Peróxidos/química
9.
Trends Biochem Sci ; 42(11): 914-930, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28917970

RESUMEN

Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials.


Asunto(s)
Enzimas/química , Nanoestructuras/química , Enzimas/metabolismo
10.
Chem Soc Rev ; 49(12): 4135-4165, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32421139

RESUMEN

In the light of increasing energy demand and environmental pollution, it is urgently required to find a clean and renewable energy source. In these years, photocatalysis that uses solar energy for either fuel production, such as hydrogen evolution and hydrocarbon production, or environmental pollutant degradation, has shown great potential to achieve this goal. Among the various photocatalysts, covalent organic frameworks (COFs) are very attractive due to their excellent structural regularity, robust framework, inherent porosity and good activity. Thus, many studies have been carried out to investigate the photocatalytic performance of COFs and COF-based photocatalysts. In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented. Furthermore, diverse linkers between COF building blocks such as boron-containing connections and nitrogen-containing connections are summarised and compared. The morphologies of COFs and several commonly used strategies pertaining to photocatalytic activity are also discussed. Following this, the applications of COF-based photocatalysts are detailed including photocatalytic hydrogen evolution, CO2 conversion and degradation of environmental contaminants. Finally, a summary and perspective on the opportunities and challenges for the future development of COF and COF-based photocatalysts are given.

11.
Anal Chem ; 92(19): 13073-13083, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32872771

RESUMEN

Herein, we developed an unmodified hexagonal boron nitride (h-BN) photoelectrochemical (PEC) biosensing platform with a low background signal and high sensitivity based on CuS quantum dots (QDs)/Co3O4 polyhedra-driven multiple signal amplifications. The prepared porous h-BN nanosheets with large specific surface areas, as the photoelectric substrate material, can provide extensive active reaction sites. Meanwhile, the CuS QDs/Co3O4 polyhedra were synthesized by the zeolitic imidazolate framework (ZIF-67) and utilized as a multiple signal amplifier, which can not only drive the p-n semiconductor quenching effect to compete with the h-BN photoelectrode for the consumption of electron donors and exciting light but also trigger a mimetic enzymatic catalytic precipitation effect to inhibit electron transfer. The quenching ability and peroxidase-like activity of CuS QDs/Co3O4 polyhedra were evaluated to prove its superiority, and the possible mechanisms of electron transfer and enzymatic catalytic were further analyzed in detail. The developed PEC biosensing platform for the chlorpyrifos assay presented outstanding performance with a wide linear range from 1 × 10-1 to 1 × 107 ng mL-1 and a low detection limit of 0.34 pg mL-1 and exhibited excellent selectivity, reproducibility, and stability. In addition, the CuS QDs/Co3O4 polyhedra-activated h-BN PEC biosensing platform may exhibit universality for various analytes via replacing the corresponding target aptamer sequence. This work provides a remarkable inspiration and valuable reference for the development of the PEC biosensor, and the signal amplifier-enabled unmodified PEC biosensing platform strategy has a bright application in early safety warning, bioanalysis and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Compuestos de Boro/química , Cloropirifos/análisis , Inhibidores de la Colinesterasa/análisis , Técnicas Electroquímicas , Puntos Cuánticos/química , Cobalto/química , Cobre/química , Óxidos/química , Tamaño de la Partícula , Procesos Fotoquímicos , Porosidad , Propiedades de Superficie
12.
Small ; 16(29): e2001634, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32567191

RESUMEN

Semiconductor photocatalysis is a promising technology to tackle refractory antibiotics contamination in water. Herein, a facile in situ growth strategy is developed to implant single-atom cobalt in polymeric carbon nitride (pCN) via the bidentate ligand for efficient photocatalytic degradation of oxytetracycline (OTC). The atomic characterizations indicate that single-atom cobalt is successfully anchored on pCN by covalently forming the CoO bond and CoN bond, which will strengthen the interaction between single-atom cobalt and pCN. This single-atom cobalt can efficiently expand optical absorption, increase electron density, facilitate charge separation and transfer, and promote OTC degradation. As the optimal sample, Co(1.28%)pCN presents an outstanding apparent rate constant for OTC degradation (0.038 min-1 ) under visible light irradiation, which is about 3.7 times than that of the pristine pCN. The electron spin resonance (ESR) tests and reactive species trapping experiments demonstrate that the 1 O2 , h+ , •O2- , and •OH are responsible for OTC degradation. This work develops a new way to construct single-atom-modified pCN and provides a green and highly efficient strategy for refractory antibiotics removal.


Asunto(s)
Antibacterianos , Cobalto , Catálisis , Ligandos , Nitrilos
13.
Crit Rev Biotechnol ; 40(1): 99-118, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31690134

RESUMEN

The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.


Asunto(s)
Biotecnología , Eliminación de Residuos Líquidos/métodos , Técnicas Biosensibles , Monitoreo del Ambiente
14.
Ecotoxicol Environ Saf ; 189: 109914, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761551

RESUMEN

Recently, a large quantity of carbon nanotubes (CNTs) enters the environment due to the increasing production and applications. More and more researches are focused on the fate and possible ecological risks of CNTs. Some literatures summarized the effects of CNTs on the chemical behavior and fate of pollutants. However, little reviewed the effects of CNTs on the biodegradation of pollutants. In general, the effects of CNTs on the biodegradation of pollutants and the related mechanisms were summarized in this review. CNTs have positive or negative effects on the biodegradation of contaminants by affecting the functional microorganisms, enzymes and the bioavailability of pollutants. CNTs may affect the microbial growth, activity, biomass, community composition, diversity and the activity of enzymes. The decrease of the bioavailability of pollutants due to the sorption on CNTs also causes the reduction of the biodegradation of contaminants. In addition, the roles of CNTs are controlled by multiple mechanisms, which are divided into three aspects i.e., properties of CNTs, environment condition, and microorganisms themself. The better understanding of the fate of CNTs and their impacts on the biochemical process in the environment is conducive to determine the release of CNTs into the environment.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Nanotubos de Carbono , Biomasa
15.
Chem Soc Rev ; 48(20): 5266-5302, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31468053

RESUMEN

As a newly emerging kind of porous material, covalent organic frameworks (COFs) have drawn much attention because of their fascinating structural features (e.g., divinable structure, adjustable porosity and total organic backbone). Since the seminal work of Yaghi and co-workers reported in 2005, the COF materials have shown superior potential in diverse applications, such as gas storage, adsorption, optoelectronics, catalysis, etc. Recently, COF materials have shown a new trend in sensing fields. This critical review briefly describes the synthesis routes for COF powders and thin films. What's more, the most fascinating and significant applications of COFs in sensing fields including explosive sensing, humidity sensing, pH detection, biosensing, gas sensing, metal ion sensing, and other substance sensing are summarized and highlighted. Finally, the major challenges and future trends of COFs with respect to their preparation and sensing applications are discussed.

16.
Chem Soc Rev ; 48(2): 488-516, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30565610

RESUMEN

As a newly emerging class of porous materials, covalent organic frameworks (COFs) have attracted much attention due to their intriguing structural merits (e.g., total organic backbone, tunable porosity and predictable structure). However, the insoluble and unprocessable features of bulk COF powder limit their applications. To overcome these limitations, considerable efforts have been devoted to exploring the fabrication of COF thin films with controllable architectures, which open the door for their novel applications. In this critical review, we aim to provide the recent advances in the fabrication of COF thin films not only supported on substrates but also as free-standing nanosheets via both bottom-up and top-down strategies. The bottom-up strategy involves solvothermal synthesis, interfacial polymerization, room temperature vapor-assisted conversion, and synthesis under continuous flow conditions; whereas, the top-down strategy involves solvent-assisted exfoliation, self-exfoliation, mechanical delamination, and chemical exfoliation. In addition, the applications of COF thin films including energy storage, semiconductor devices, membrane-separation, sensors, and drug delivery are summarized. Finally, to accelerate further research, a personal perspective covering their synthetic strategies, mechanisms and applications is presented.

17.
J Environ Sci (China) ; 87: 10-23, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791484

RESUMEN

Five biochars derived from lotus seedpod (LSP) were applied to examine and compare the adsorption capacity of 17ß-estradiol (E2) from aqueous solution. The effect of KOH activation and the order of activation steps on material properties were discussed. The effect of contact time, initial concentration, pH, ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process. Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr. The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength. E2 adsorption on LSP-derived biochar (BCs) was influenced little by humic acid, and slightly affected by the solution pH when its value ranged from 4.0 to 9.0, but considerably affected at pH 10.0. Low environmental temperature is favorable for E2 adsorption. Chemisorption, π-π interactions, monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms. Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material. Post-treated biochar exhibited better adsorption capacity for E2 than direct treated, pre-treated, and raw LSP biochar. Pyrolyzed biochar at higher temperature improved E2 removal. The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution, with its advantages of good efficiency and simple technology.


Asunto(s)
Estradiol/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Carbón Orgánico , Calor , Sustancias Húmicas , Concentración de Iones de Hidrógeno , Hidróxidos , Cinética , Lotus , Concentración Osmolar , Compuestos de Potasio , Semillas , Temperatura
18.
Small ; 15(2): e1803088, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548176

RESUMEN

Metal organic frameworks (MOFs), as an original kind of organic-inorganic porous material, are constructed with metal centers and organic linkers via a coordination complexation reaction. Among uncountable MOF materials, iron-containing metal organic frameworks (Fe-MOFs) have excellent potential in practical applications owing to their many fascinating properties, such as diverse structure types, low toxicity, preferable stability, and tailored functionality. Here, recent research progresses of Fe-MOFs in attractive features, synthesis, and multifunctional applications are described. Fe-MOFs with porosity and tailored functionality are discussed according to the design of building blocks. Four types of synthetic methods including solvothermal, hydrothermal, microwave, and dry gel conversion synthesis are illustrated. Finally, the applications of Fe-MOFs in Li-ion batteries, sensors, gas storage, separation in gas and liquid phases, and catalysis are elucidated, focusing on the mechanism. The aim is to provide prospects for extending Fe-MOFs in more practical applications.

19.
Small ; 15(17): e1900133, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30908899

RESUMEN

Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.


Asunto(s)
Técnicas Biosensibles/métodos , Colorimetría/métodos , Diabetes Mellitus/sangre , Glucosa/análisis , Nanoestructuras/química , Peroxidasas/química , Animales , Catálisis , Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/análisis , Humanos , Límite de Detección , Magnetismo , Nanopartículas del Metal/química , Metales/química , Nanotubos de Carbono/química , Oxidación-Reducción , Óxidos/química , Propiedades de Superficie
20.
Small ; 15(23): e1901008, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30972930

RESUMEN

Highly active photocatalysts driving chemical reactions are of paramount importance toward renewable energy substitutes and environmental protection. As a fascinating Aurivillius phase material, Bi2 MoO6 has been the hotspot in photocatalytic applications due to its visible light absorption, nontoxicity, low cost, and high chemical durability. However, pure Bi2 MoO6 suffers from low efficiency in separating photogenerated carriers, small surface area, and poor quantum yield, resulting in low photocatalytic activity. Various strategies, such as morphology control, doping/defect-introduction, metal deposition, semiconductor combination, and surface modification with conjugative π structures, have been systematically explored to improve the photocatalytic activity of Bi2 MoO6 . To accelerate further developments of Bi2 MoO6 in the field of photocatalysis, this comprehensive Review endeavors to summarize recent research progress for the construction of highly efficient Bi2 MoO6 -based photocatalysts. Furthermore, benefiting from the enhanced photocatalytic activity of Bi2 MoO6 -based materials, various photocatalytic applications including water splitting, pollutant removal, and disinfection of bacteria, were introduced and critically reviewed. Finally, the current challenges and prospects of Bi2 MoO6 are pointed out. This comprehensive Review is expected to consolidate the existing fundamental theories of photocatalysis and pave a novel avenue to rationally design highly efficient Bi2 MoO6 -based photocatalysts for environmental pollution control and green energy development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA