RESUMEN
A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , División Celular , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , División Celular/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular , Xilema/citología , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genéticaRESUMEN
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Alelos , Predisposición Genética a la Enfermedad/genética , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genéticaRESUMEN
Root development is tightly controlled by light, and the response is thought to depend on signal transmission from the shoot. Here, we show that the root apical meristem perceives light independently from aboveground organs to activate the light-regulated transcription factor ELONGATED HYPOCOTYL5 (HY5). The ROS balance between H2O2 and superoxide anion in the root is disturbed under darkness with increased H2O2. We demonstrate that root-derived HY5 directly activates PER6 expression to eliminate H2O2. Moreover, HY5 directly represses UPBEAT1, a known inhibitor of peroxidases, to release the expression of PERs, partially contributing to the light control of ROS balance in the root. Our results reveal an unexpected ability in roots with specific photoreception and provide a mechanistic framework for the HY5-mediated interaction between light and ROS signaling in early root development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Peróxido de Hidrógeno/metabolismo , Luz , Regulación de la Expresión Génica de las PlantasRESUMEN
Gene-based association tests aggregate multiple SNP-trait associations into sets defined by gene boundaries and are widely used in post-GWAS analysis. A common approach for gene-based tests is to combine SNPs associations by computing the sum of χ2 statistics. However, this strategy ignores the directions of SNP effects, which could result in a loss of power for SNPs with masking effects, e.g., when the product of two SNP effects and the linkage disequilibrium (LD) correlation is negative. Here, we introduce "mBAT-combo," a set-based test that is better powered than other methods to detect multi-SNP associations in the context of masking effects. We validate the method through simulations and applications to real data. We find that of 35 blood and urine biomarker traits in the UK Biobank, 34 traits show evidence for masking effects in a total of 4,273 gene-trait pairs, indicating that masking effects is common in complex traits. We further validate the improved power of our method in height, body mass index, and schizophrenia with different GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-combo with smaller sample sizes can be identified by the single-SNP approach with a 1.7-fold increase in sample sizes. Eleven genes significant only in mBAT-combo for schizophrenia are confirmed by functionally informed fine-mapping or Mendelian randomization integrating gene expression data. The framework of mBAT-combo can be applied to any set of SNPs to refine trait-association signals hidden in genomic regions with complex LD structures.
Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Desequilibrio de Ligamiento , Genómica , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.
Asunto(s)
Cadmio , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Cadmio/metabolismo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/genética , Semillas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismoRESUMEN
OBJECTIVE: This study aimed to investigate the prevalence and distribution of carcinoma in the liver margin (LM) of resected perihilar cholangiocarcinoma (pCCA) and establish a method for LM examination. BACKGROUND: LM is the largest margin in resected pCCA with undefined status and assessment method. METHODS: 227 pCCA cases underwent major hepatectomy were divided into a discovery cohort (n=101) assessed using serial whole-mount digital large sections (WDLS) combined with small sections, and a control cohort (n=126) assessed using only small sections. RESULTS: The LM R1 resection rate was 38.6% (39/101) in the discovery cohort and 5.6% (7/126) in the control cohort. WDLS identified more LM R1 cases compared to the small section in the discovery cohort (38.6% vs. 5.9%, P<0.001). R0 patients in the discovery cohort had better overall survival and recurrence-free survival than those in the control cohort (both P<0.05). Additionally, 95% of carcinoma was found within 20 mm of the proximal ductal margin (DM). A proximal DM distance of<5 mm was an independent risk factor for LM R1 resection. Patients with which are more likely to experience R1 compared to those with ≥ 5 mm (P<0.001). CONCLUSIONS: Positive LM was the significant cause for R1 resection of pCCA and the utilization of WDLS improved the diagnostic accuracy of LM. An examination methodology was established, highlighting the necessity of examining LM within a 20 mm radius around the proximal DM, especially in patients with a proximal DM of<5 mm.
RESUMEN
BACKGROUND: Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS: This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS: DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Asunto(s)
Dendrobium , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , beta-Fructofuranosidasa , Dendrobium/genética , Dendrobium/enzimología , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Estrés Fisiológico/genética , Genes de PlantasRESUMEN
BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.
Asunto(s)
Cadmio , Compuestos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cadmio/metabolismo , Compuestos Férricos/metabolismo , Cloruros/metabolismo , Fertilizantes , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
BACKGROUND: Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS: Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS: In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.
Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Tetraploidía , Triticum , Triticum/genética , Triticum/microbiología , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Poaceae/genética , Poaceae/microbiología , Mapeo CromosómicoRESUMEN
INTRODUCTION: Parthenogenetic chimera is an extremely rare condition in human. Very few patients with parthenogenetic chimerism with XX/XY cells have been identified. CASE PRESENTATION: We report the clinical findings and molecular analysis of chimerism with a 46,XX/46,XY karyotype in a patient presenting idiopathic oligoasthenoteratozoospermia (OAT). To clarify the mechanism of chimera formation, short tandem repeat analysis using 21 loci was carried out. Quantitation of alleles in D6S1043, D12S391, fibrinogen alpha chain, and amelogenin revealed double paternal and one maternal genetic contribution to the patient, which is consistent with a parthenogenetic chimerism. The likely mechanism of chimerism formation was also discussed, followed by a literature review. CONCLUSION: This is the first documented case of parthenogenetic chimerism in an adult male with XX/XY cells presenting OAT. Improved cell sampling and more sensitive and specific detection methods are necessary to identify more patients with XX/XY chimerism for systematic studies on this condition in the future.
Asunto(s)
Quimerismo , Humanos , Masculino , Adulto , Oligospermia/genética , Partenogénesis/genética , Repeticiones de Microsatélite/genética , Cromosomas Humanos Y/genética , Cromosomas Humanos X/genética , Azoospermia/genética , CariotipificaciónRESUMEN
DNA methylation regulators (DMRs) play a key role in DNA methylation, thus mediating tumor occurrence, metastasis, and immunomodulation. However, the effects of DMRs on clinical outcomes and immunotherapy response remain unexplored in lung adenocarcinoma (LUAD). In this study, eight LUAD cohorts and one immunotherapeutic cohort of lung cancer were utilized. We constructed a DNA methylation regulators-related signature (DMRRS) using univariate and multivariate COX regression analysis. The DMRRS-defined low-risk group was preferentially associated with favorable prognosis, tumor-inhibiting microenvironment, more sensitivity to several targeted therapy drugs, and better immune response. Afterward, the prognostic value and predictive potential in immunotherapy response were validated. Collectively, our findings uncovered that the DMRRS was closely associated with the tumor immune microenvironment and could effectively predict the clinical outcome and immune response of LUAD patients.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Metilación de ADN , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Inmunomodulación , Microambiente Tumoral/genéticaRESUMEN
Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects, allowing a wide range of applications. Existing NLOS systems rely on pulsed lasers and time-resolved single-photon detectors to capture the information encoded in the time of flight of scattered photons. Despite remarkable advances, the pulsed time-of-flight LIDAR approach has limited temporal resolution and struggles to detect the frequency-associated information directly. Here, we propose and demonstrate the coherent scheme-frequency-modulated continuous wave calibrated by optical frequency comb-for high-resolution NLOS imaging, velocimetry, and vibrometry. Our comb-calibrated coherent sensor presents a system temporal resolution at subpicosecond and its superior signal-to-noise ratio permits NLOS imaging of complex scenes under strong ambient light. We show the capability of NLOS localization and 3D imaging at submillimeter scale and demonstrate NLOS vibrometry sensing at an accuracy of dozen Hertz. Our approach unlocks the coherent LIDAR techniques for widespread use in imaging science and optical sensing.
RESUMEN
KEY MESSAGE: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.
Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Genes de Plantas , Fitomejoramiento , Enfermedades de las Plantas , Poaceae , Translocación Genética , Triticum , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Poaceae/genética , Poaceae/microbiología , Cromosomas de las Plantas/genética , Tetraploidía , Marcadores Genéticos , Puccinia/patogenicidad , Mapeo Cromosómico , Hibridación Fluorescente in Situ , Basidiomycota/patogenicidadRESUMEN
KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.
Asunto(s)
Aegilops , Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Genes de Plantas , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Aegilops/genética , Aegilops/microbiología , Fitomejoramiento , Transcriptoma , Cromosomas de las Plantas/genética , Puccinia/patogenicidad , Puccinia/fisiología , Regulación de la Expresión Génica de las PlantasRESUMEN
KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.
Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Tetraploidía , Poaceae/genéticaRESUMEN
Coke oven gas (COG) is considered to be one of the most likely raw materials for large-scale H2 production in the near or medium term, with membrane separation technologies standing out from traditional technologies due to their less energy-intensive structures as well as simple operation and occupation. Based on the "MOF-in/on-COF" pore modification strategy, the COF membrane (named the PBD membrane) and ZIF-67 were used as assembly elements to design advanced molecular sieving membranes for hydrogen separation. The composition and microstructure of membranes before and after ZIF-67 loading as well as ZIF-67-in-PBD membranes under different preparation conditions (metal ion concentration, metal-ligand ratio, and reaction time) were investigated by various characterizations to reveal the synthesis regularity and microstructure regulation. Furthermore, H2/CH4 separation performances and separation mechanisms were also analyzed and compared. Finally, a dense, continuous, ultrathin, and self-supporting ZIF-67-in-PBD membrane with a Co2+ concentration of 0.02 mol/L, a metal-ligand ratio of 1:4, and a reaction time of 6 h exhibited the largest specific surface area, micropore proportion, and the best H2/CH4 separation selectivity (α = 33.48), which was significantly higher than the Robeson upper limit and was in a leading position among reported MOF membranes. The separation mechanism was mainly size screening, and adsorption selectivity also contributed a little.
RESUMEN
RATIONALE: Eucommia cortex is the core herb in traditional Chinese medicine preparations for the treatment of osteoporosis. Pinoresinol diglucoside (PDG), the quality control marker and the key pharmacodynamic component in Eucommia cortex, has attracted global attention because of its definite effects on osteoporosis. However, the in vivo metabolic characteristics of PDG and its anti-osteoporotic mechanism are still unclear, restricting its development and application. METHODS: Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to analyze the metabolic characteristics of PDG in rats, and its anti-osteoporosis targets and mechanism were predicted using network pharmacology. RESULTS: A total of 51 metabolites were identified or tentatively characterized in rats after oral administration of PDG (10 mg/kg/day), including 9 in plasma, 28 in urine, 13 in feces, 10 in liver, 4 in heart, 3 in spleen, 11 in kidneys, and 5 in lungs. Furan-ring opening, dimethoxylation, glucuronidation, and sulfation were the main metabolic characteristics of PDG in vivo. The potential mechanism of PDG against osteoporosis was predicted using network pharmacology. PDG and its metabolites could regulate BCL2, MARK3, ALB, and IL6, involving PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. CONCLUSIONS: This study was the first to demonstrate the metabolic characteristics of PDG in vivo and its potential anti-osteoporosis mechanism, providing the data for further pharmacological validation of PDG in the treatment of osteoporosis.
Asunto(s)
Lignanos , Farmacología en Red , Osteoporosis , Ratas Sprague-Dawley , Animales , Lignanos/farmacología , Lignanos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ratas , Cromatografía Líquida de Alta Presión/métodos , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Glucósidos/farmacología , Metaboloma/efectos de los fármacos , Espectrometría de Masas/métodosRESUMEN
Golden pompano (Trachinotus ovatus), a marine farmed fish, is economically valuable in China. Lysophosphatidic acid phosphatase type 6 (ACP6) is a type of histidine acid phosphatase and plays an important role in regulating host inflammatory responses and anti-cancer effects in mammals. However, its function in teleost remains unknown. The present study aimed to investigate ACP6 function in golden pompano. ACP6 from golden pompano was identified, cloned, and named TroACP6. The open reading frame of TroACP6 was 1275 bp in length, encoding 424 amino acids. The TroACP6 protein shared high sequence identity (43.32%-90.57 %) with the ACP6 of other species. It contained a histidine phosphatase domain with the active site motif "RHGART" and the catalytic dipeptide HD (histidine and aspartate). Meanwhile, TroACP6 mRNA was widely distributed in the various tissues of healthy golden pompano, with the maximum expression in the head kidney. The function of TroACP6 was analyzed both in vitro and in vivo, and the results revealed that the purified recombinant TroACP6 protein exhibited optimum phosphatase activity at pH 6.0 and 50 °C in vitro. Meanwhile, upon Edwardsiella tarda challenge, TroACP6 expression in tissues increased significantly in vivo. In addition, TroACP6 overexpression enhanced the respiratory burst activity and superoxide dismutase activity of head kidney macrophages in vivo. Furthermore, the overexpression and knockdown of TroACP6 in vivo had a significant effect on bacterial infection. In summary, the study findings indicate that TroACP6 in golden pompano is involved in host defense against bacterial infection.
RESUMEN
BACKGROUND: After a 920-day hiatus, COVID-19 resurged in the Tibet Autonomous Region of China in August 2022. This study compares the characteristics of COVID-19 between high-altitude residents and newcomers, as well as between newcomers and lowlanders. METHODS: This multi-center cohort study conducted at the Third People's Hospital of Tibet Autonomous Region and Beijing University Shenzhen Hospital, included 520 high-altitude resident patients, 53 high-altitude newcomer patients, and 265 lowlander patients infected with the Omicron variant. Initially, we documented epidemiological, clinical, and treatment data across varying residency at admission. We compared the severity of COVID-19 and various laboratory indicators, including hemoglobin concentration and SpO2%, over a 14-day period from the date of the first positive nucleic acid test, as well as the differences in treatment methods and disease outcomes between highlanders and high-altitude newcomers. We also compared several characteristics of COVID-19 between high-altitude newcomers and lowlanders. Univariate analysis, multivariable logistic regression, and the generalized linear mixed model were utilized for the analysis. RESULTS: No fatalities were observed. The study found no significant differences in COVID-19 severity or in the physiological measures of hemoglobin concentration and SpO2% between high-altitude and lowland residents. Similarly, there were no statistically significant differences in the values or trends of hemoglobin and SpO2% between high-altitude residents and newcomers throughout the 14-day observation period. However, compared to age- and sex-matched lowlander patients (1:5 ratio), high-altitude newcomers exhibited higher heart rates, respiratory rates, and average hemoglobin concentrations, along with lower platelet counts. There were no significant differences in hospital stays between the two groups. CONCLUSIONS: High-altitude residents and newcomer patients exhibit clinical similarities. However, the clinical characteristics of high-altitude newcomers and lowlander patients differ due to the impact of the high-altitude environment. These results highlight potential considerations for public health strategies in high-altitude regions such as Tibet.