Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; : e202400269, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923255

RESUMEN

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.

2.
Phytother Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973353

RESUMEN

American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.

3.
Phytother Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973314

RESUMEN

Tamarixetin, a natural dietary flavone, exhibits remarkable potential for the treatment of ischemic stroke. The present article aimed to explore the impact of tamarixetin on ischemic stroke and elucidate the underlying mechanisms. Effects of tamarixetin on ischemic stroke were evaluated in rats using the middle cerebral artery occlusion and reperfusion (MCAO/R) model, by assessing the neurological deficit scores, brain water content, brain infraction, and neuronal damage. The levels of proinflammatory cytokines, NLRP3 inflammasome activation, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were measured in MCAO/R rats and lipopolysaccharide-stimulated cells. Tamarixetin administration improved the neurological dysfunction and neuronal loss in MCAO/R rats. In addition, tamarixetin reduced microglial hyperactivation and proinflammatory cytokines expression in vivo and in vitro. Tamarixetin attenuated NF-κB p65 phosphorylation and promoter activity, reduced NLRP3 expression and caspase-1 cleavage, and downregulated IL-1ß and IL-18 secretions to suppress NLRP3 inflammasome activation. The levels of superoxide anion, hydrogen peroxide, and ROS were also suppressed by tamarixetin. The downregulation of NADP+ and NADPH levels, and gp91phox expression indicated the ameliorative effects of tamarixetin on NADPH oxidase activation. In the gp91phox knockdown cells treated with lipopolysaccharide, the effects of tamarixetin on NADPH oxidase activation, ROS generation, and NLRP3 inflammasome activation were diminished. Moreover, tamarixetin protects neurons against microglial hyperactivation in vitro. Our findings support the potential of tamarixetin as a therapeutic agent for ischemic stroke, and its mechanism of action involves the inhibition of NADPH oxidase-NLRP3 inflammasome signaling.

4.
Small ; 19(9): e2205531, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549896

RESUMEN

Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.


Asunto(s)
Nanoestructuras , Neoplasias , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Piroptosis , Citoplasma/metabolismo , Micelas , Nanoestructuras/química
5.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446707

RESUMEN

The root bark of Dictamnus dasycarpus Turcz is a traditional Chinese medicine, Dictamni Cortex (DC), which is mainly used in the clinical treatment of skin inflammation, eczema, rubella, rheumatism, and gynecological inflammation. Unexpectedly, there are some cases of liver injury after the administration of DC. However, the mechanism of hepatotoxicity remains ambiguous. The aim of this study was to explore the mechanism and substance bases of DC hepatotoxicity based on network pharmacology and molecular docking, verified through pharmacological experiments. Partial prototype components and metabolites in vivo of quinoline alkaloids from DC were selected as candidate compounds, whose targets were collected from databases. Network pharmacology was applied to study the potential hepatotoxic mechanism after correlating the targets of candidate compounds with the targets of hepatotoxicity. Molecular docking was simulated to uncover the molecular mechanism. Furthermore, the hepatotoxicity of the extract and its constituents from DC was evaluated in vivo and in vitro. We constructed the "potential toxic components-toxic target-toxic pathway" network. Our results showed that the targets of DC included CYP1A2 and GSR, participating in heterologous steroid metabolism, REDOX metabolism, drug metabolism, heterocyclic metabolic processes, the synthesis of steroid hormone, cytochrome P450 metabolism, chemical carcinogens and bile secretion pathways. In vitro and in vivo experiments displayed that DC could result in a decrease in GSH-Px and oxidative stress, simultaneously inhibiting the expression of CYP1A2 and inducing hepatotoxicity. These results further indicated the mechanism of hepatotoxicity induced by Dictamnus dasycarpus, providing a basic theory to explore and prevent hepatotoxicity in the clinical usage of Dictamnus dasycarpus.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Dictamnus , Medicamentos Herbarios Chinos , Humanos , Dictamnus/química , Simulación del Acoplamiento Molecular , Citocromo P-450 CYP1A2 , Farmacología en Red , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inflamación , Medicamentos Herbarios Chinos/farmacología
6.
Zhongguo Zhong Yao Za Zhi ; 48(3): 789-796, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36872243

RESUMEN

This study aimed to identify the direct pharmacological targets of Jingfang Granules in treating infectious pneumonia via "target fishing" strategy. Moreover, the molecular mechanism of Jingfang Granules in treating infectious pneumonia was also investigated based on target-related pharmacological signaling pathways. First, the Jingfang Granules extract-bound magnetic nanoparticles were prepared, which were incubated with lipopolysaccharide(LPS)-induced mouse pneumonia tissue lysates. The captured proteins were analyzed by high-resolution mass spectrometry(HRMS), and the target groups with specific binding to the Jingfang Granules extract were screened out. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was used to identify the target protein-associated signaling pathways. On this basis, the LPS-induced mouse model of infectious pneumonia was established. The possible biological functions of target proteins were verified by hematoxylin-eosin(HE) staining and immunohistochemical assay. A total of 186 Jingfang Granules-specific binding proteins were identified from lung tissues. KEGG pathway enrichment analysis showed that the target protein-associated signaling pathways mainly included Salmonella infection, vascular and pulmonary epithelial adherens junction, ribosomal viral replication, viral endocytosis, and fatty acid degradation. The target functions of Jingfang Granules were related to pulmonary inflammation and immunity, pulmonary energy metabolism, pulmonary microcirculation, and viral infection. Based on the in vivo inflammation model, Jingfang Granules significantly improved the alveolar structure of the LPS-induced mouse model of infectious pneumonia and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6). Meanwhile, Jingfang Gra-nules significantly up-regulated the expressions of key proteins of mitochondrial function COX Ⅳ and ATP, microcirculation-related proteins CD31 and Occludin, and proteins associated with viral infection DDX21 and DDX3. These results suggest that Jingfang Gra-nules can inhibit lung inflammation, improve lung energy metabolism and pulmonary microcirculation, resist virus infection, thus playing a protective role in the lung. This study systematically explains the molecular mechanism of Jingfang Granules in the treatment of respiratory inflammation from the perspective of target-signaling pathway-pharmacological efficacy, thereby providing key information for clinical rational use of Jingfang Granules and expanding potential pharmacological application.


Asunto(s)
Antiinfecciosos , Neumonía , Animales , Ratones , Lipopolisacáridos , Inflamación , Bioensayo , Modelos Animales de Enfermedad , Interleucina-6
7.
Zhongguo Zhong Yao Za Zhi ; 48(2): 472-480, 2023 Jan.
Artículo en Zh | MEDLINE | ID: mdl-36725237

RESUMEN

This study identified the anti-depression targets of Kaixin San(KXS) in the brain tissue with "target fishing" strategy, and explored the target-associated pharmacological signaling pathways to reveal the anti-depression molecular mechanism of KXS. The Balb/c mouse model of depression was established by chronic unpredictable mild stress(CUMS) and the anti-depression effect of KXS was evaluated by forced swimming test and sucrose preference test. KXS active components were bonded to the benzophenone-modified magnetic nanoparticles by photocrosslinking reaction for capturing target proteins from cortex, thalamus and hippocampus of depressive mice. The target proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry(LC-MS/MS). The enrichment analysis on signaling pathways was performed by Cytoscape. The potential biological functions of targets were verified by immunohistochemistry and Western blot assay. The results showed that KXS significantly improved the behavioral indexes. There were 64, 91, and 44 potential targets of KXS identified in cortex, thalamus, and hippocampus, respectively, according to the target identification experiment. The functions of these targets were mainly associated with vasopressin-regulated water reabsorption, salmonella infection, thyroid hormone synthesis, and other signaling pathways. Besides, the results of immunohistochemistry and Western blot showed that KXS up-regulated the expressions of argipressine(AVP) in the cortex, heat shock protein 60(HSP60), cytochrome C oxidase 4(COX4), and thyrotropin-releasing hormone(TRH) in the thalamus, and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and nuclear factor kappa B(NF-κB) p65 in the thalamus. Therefore, KXS may exert anti-depression effect through regulating vasopressin signaling pathway in the cortex and inflammation, energy metabolism, and thyroid hormone signaling pathways in the thalamus, and the effect of KXS on hippocampus is not significant.


Asunto(s)
Depresión , Medicamentos Herbarios Chinos , Animales , Ratones , Cromatografía Liquida , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Espectrometría de Masas en Tándem , Depresión/tratamiento farmacológico
8.
Anal Chem ; 94(7): 3180-3187, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35133791

RESUMEN

Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.


Asunto(s)
Oro , Nanopartículas del Metal , Catálisis , Oro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Rayos Ultravioleta
9.
Chembiochem ; 23(13): e202200038, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35442561

RESUMEN

Protopanaxadiol (PPD), a main ginseng metabolite, exerts powerful anticancer effects against multiple types of cancer; however, its cellular targets remain elusive. Here, we synthesized a cell-permeable PPD probe via introducing a bifunctional alkyne-containing diazirine photo-crosslinker and performed a photoaffinity labeling-based chemoproteomic study. We identified retinoblastoma binding protein 4 (RBBP4), a chromatin remodeling factor, as an essential cellular target of PPD in HCT116 colorectal cancer cells. PPD significantly decreased RBBP4-dependent trimethylation at lysine 27 of histone H3 (H3K27me3), a crucial epigenetic marker that correlates with histologic signs of colorectal cancer aggressiveness, and PPD inhibition of proliferation and migration of HCT116 cells was antagonized by RBBP4 RNA silencing. Collectively, our study highlights a previously undisclosed anti-colorectal cancer cellular target of the ginseng metabolite and advances the fundamental understanding of RBBP4 functions via a chemical biology strategy.


Asunto(s)
Neoplasias Colorrectales , Panax , Sapogeninas , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Humanos , Panax/química , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Sapogeninas/farmacología , Factores de Transcripción/metabolismo
10.
Pharmacol Res ; 177: 106093, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074526

RESUMEN

Monoubiquitination plays a critical role as one of the largest histone post-translational modifications (PTMs). Recent study has revealed that histone H2B monoubiquitination (H2Bub1) at a unique lysine 120 (K120) is widely involved in the development of inflammation progression. However, small-molecules directly targeting H2B to exert anti-inflammation effects via editing monoubiquitination have not been hitherto reported. In this study, we first discover a natural small-molecule epoxymicheliolide (ECL), which directly binds to H2B to inhibit microglia-mediated neuroinflammation in vitro and in vivo. Mechanism study suggests that ECL covalently modifies a previously undisclosed lysine 46 (K46) in H2B, and recruits E3 ubiquitin ligase RNF20 to promote H2Bub1 at K120. ChIP-seq and transcriptomics further reveal that ECL-mediated H2Bub1 markedly disrupts the AP-1 recruitment to proinflammatory gene promoters for microglia inactivation. Collectively, our findings suggests that K46 of H2B serves as a promising pharmacological target to develop small-molecule drugs against microglia-mediated neuroinflammation, and ECL represents a valuable lead compound for neuroinflammation via regulating histone monoubiquitination.


Asunto(s)
Histonas , Ubiquitina-Proteína Ligasas , Histonas/metabolismo , Humanos , Lisina , Enfermedades Neuroinflamatorias , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Pharmacol Res ; 182: 106309, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716915

RESUMEN

The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/ß-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.


Asunto(s)
Colitis , Interleucina-10 , Animales , Proliferación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Complemento C1q/metabolismo , Complemento C1q/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Glucósidos , Inflamación/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monoterpenos , Células Madre/metabolismo
12.
Pharmacol Res ; 176: 106046, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007708

RESUMEN

Ischemic stroke remains one of the leading causes of death worldwide, thereby highlighting the urgent necessary to identify new therapeutic targets. Deoxyhypusine hydroxylase (DOHH) is a fundamental enzyme catalyzing a unique posttranslational hypusination modification of eukaryotic translation initiation factor 5A (eIF5A) and is highly involved in the progression of several human diseases, including HIV-1 infection, cancer, malaria, and diabetes. However, the potential therapeutic role of pharmacological regulation of DOHH in ischemic stroke is still poorly understood. Our study first discovered a natural small-molecule brazilin (BZ) with an obvious neuroprotective effect against oxygen-glucose deprivation/reperfusion insult. Then, DOHH was identified as a crucial cellular target of BZ using HuProt™ human proteome microarray. By selectively binding to the Cys232 residue, BZ induced a previously undisclosed allosteric effect to significantly increase DOHH catalytic activity. Furthermore, BZ-mediated DOHH activation amplified mitophagy for mitochondrial function and morphology maintenance via DOHH/eIF5A hypusination signaling pathway, thereby protecting against ischemic neuronal injury in vitro and in vivo. Collectively, our study first identified DOHH as a previously unreported therapeutic target for ischemic stroke, and provided a future drug design direction for DOHH allosteric activators using BZ as a novel molecular template.


Asunto(s)
Benzopiranos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Oxigenasas de Función Mixta/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Benzopiranos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Embarazo , Procesamiento Proteico-Postraduccional , Ratas Wistar , Pez Cebra
13.
Bioorg Chem ; 129: 106178, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36220002

RESUMEN

Neuroinflammation is a leading cause for neurological disorders. Carbazole alkaloids, isolated from the medicinal plants of Murraya species (Rutaceae), have exhibited wide pharmacological activities particularly for neuroinflammation. However, its underlying cellular targets and molecular mechanisms still remain unclear. In current study, we found that murrayafoline A (MA), a carbazole alkaloid obtained from Murraya tetramera, potently inhibited the production of neuroinflammation mediators, such as nitric oxide (NO), TNF-α, IL-6 and IL-1ß in LPS-induced BV-2 microglial cells. Then, we performed thermal proteome profiling (TPP) strategy to identify Specificity protein 1 (Sp1) as a potential cellular target of MA. Moreover, we performed surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DRATS) assays to confirm the direct interaction between MA and Sp1. Furthermore, we downregulated Sp1 expression in BV2 cells using siRNA transfection, and observed that Sp1 knockdown significantly antagonized MA-mediated inhibition of neuroinflammation mediator production. Meanwhile, Sp1 knockdown also markedly reversed MA-mediated inactivation of IKKß/NF-κB and p38/JNK MAPKs pathways. Finally, in vivo studies revealed that MA significantly suppressed the expression of Iba-1, TNF-α, and IL-6, while increased the number of Nissl bodies in the brains of LPS-induced mice. Taken together, our study demonstrated that MA exerted obvious anti-neuroinflammation effect by directly targeting Sp1, thereby inhibiting NF-κB and MAPK signaling pathways. Our findings also provided a promising direction of pharmacological targeting Sp1 for anti-neuroinflammation therapeutics as well as novel agent development.


Asunto(s)
Alcaloides , Antiinflamatorios , Carbazoles , Murraya , Enfermedades Neuroinflamatorias , Factor de Transcripción Sp1 , Animales , Ratones , Alcaloides/farmacología , Alcaloides/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carbazoles/metabolismo , Carbazoles/uso terapéutico , Interleucina-6/metabolismo , Lipopolisacáridos , Microglía/efectos de los fármacos , Murraya/química , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción Sp1/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico
14.
Chem Biodivers ; 19(11): e202200652, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36129755

RESUMEN

Four new phenolic glucosides, cannabifolins G-J (1-4), together with four known ones (5-8), were isolated from the leaves of Vitex negundo var. cannabifolia. Their structures were established by comprehensive analysis of 1D and 2D NMR data and comparison of their spectroscopic and physical data with the literature values. Compound 7 exhibited weak inhibition of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 value of 132.8 µM.


Asunto(s)
Vitex , Vitex/química , Glucósidos/farmacología , Glucósidos/química , Hojas de la Planta/química , Fenoles/química , Óxido Nítrico
15.
Molecules ; 27(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335333

RESUMEN

Clausena lenis Drake (C. lenis) is a folk medicinal herb to treat influenza, colds, bronchitis, and malaria. The 95% and 50% ethanol extract of C. lenis showed significant nitric oxide (NO) inhibition activity in BV-2 microglial cells stimulated by lipopolysaccharide (LPS). Bio-guided isolation of the active extract afforded five new compounds, including a chlorine-containing furoquinoline racemate, (±)-claulenine A (1), an amide alkaloid, claulenine B (2), a prenylated coumarin, claulenin A (3), a furocoumarin glucoside, clauleside A (4), and a multi-prenylated p-hydroxybenzaldehyde, claulenin B (5), along with 33 known ones. Their structures were determined via spectroscopic methods, and the absolute configurations of new compounds were assigned via the electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analysis. Compounds 2, 23, 27, 28, 33, and 34 showed potent anti-neuroinflammatory effects on LPS-induced NO production in BV-2 microglial cells, with IC50 values in the range of 17.6-40.9 µM. The possible mechanism was deduced to interact with iNOS through molecular docking.


Asunto(s)
Clausena , Línea Celular , Microglía , Simulación del Acoplamiento Molecular , Óxido Nítrico
16.
J Sci Food Agric ; 102(10): 4304-4312, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35043419

RESUMEN

BACKGROUND: Sacha inchi (Plukenetia volubilis L.) tea has been used as an adjuvant treatment for diabetes in Pu'er, in the Yunnan province of China. The effects of sacha inchi tea on diabetes and the underlying mechanisms remain unknown. This study was conducted to investigate the influence of a water extract of sacha inchi (P. volubilis L.) leaves (PWE) on hypoglycemic activity and gut microbiota composition in mice with streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM). During the 6 weeks of the study, T1DM mice were administered PWE intragastrically at 400 mg kg-1 body weight (BW) per day. RESULTS: Treatment with PWE reduced excessive loss of BW and excessive intake of food. It significantly decreased blood glucose levels and improved oral glucose tolerance. The treatment caused protective histopathological transformations in sections of the pancreas, leading to decreased insulin resistance and improved insulin sensitivity. Treatment with PWE also significantly ameliorated disorders of the gut microbiota structure and increased the richness and diversity of intestinal microbial species in T1DM mice. At the genus level, the populations of several crucial bacteria, such as Akkermansia, Parabacteroides, and Muribaculum increased in the PWE treatment group but the abundance of Ruminiclostridium and Oscillibacter decreased. CONCLUSIONS: Treatment with PWE can ameliorate hyperglycemic symptoms in STZ-induced T1DM mice, and the anti-diabetic effect of PWE was related to the amelioration of gut microbial structural disorder and the enrichment of functional bacteria. © 2022 Society of Chemical Industry.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Euphorbiaceae , Microbioma Gastrointestinal , Animales , China , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Euphorbiaceae/química , Ratones , Extractos Vegetales , Aceites de Plantas/química , Estreptozocina ,
17.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3007-3014, 2022 Jun.
Artículo en Zh | MEDLINE | ID: mdl-35718524

RESUMEN

This study aims to identify the anti-pneumonia targets of Xiaoer Xiaoji Zhike Oral Liquid(XXZL) with "target fishing" strategy and investigate the related signaling pathways, thereby clarifying the anti-pneumonia mechanism of XXZL. To be specific, the magnetic nanoparticles cross-linked with XXZL extract were prepared based on the photochemical activity of benzophenone, which were then used to capture the target proteins from the lysate of tissue with lipopolysaccharide(LPS)-induced pneumonia in mice. Then, the target proteins were identified by liquid chromatography-tandem mass spectrometry(LC-MS/MS). The signaling pathways and interactions of target proteins were explored with KEGG and STRING analysis on Cytoscape, and the possible biological functions of the target proteins were verified by immunohistochemistry(IHC) and RT-PCR. The result showed that LC-MS/MS identified 62 potential anti-pneumonia targets of XXZL in the lungs. The targets were involved in Ras signaling pathway, mitophagy, leukocyte transendothelial migration, mitogen-activated protein kinase(MAPK) signaling pathway, platelet activation, and actomyosin structure organization, which were closely related to inflammation, pulmonary microcirculation, pulmonary fibrosis, and energy metabolism. XXZL up-regulated the content of CD31, and heat shock protein 60(HSP60) and ATP5 b mRNA expression, down-regulated interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), COL1 A1 content, and alleviated fibrosis, which suggested the obvious effects of XXZL such as anti-inflammation, pulmonary microcirculation improvement, pulmonary fibrosis inhibition, and energy metabolism regulation. This study explained the anti-pneumonia mechanism of XXZL from targets, which can serve as a reference for the clinical application of the prescription.


Asunto(s)
Neumonía , Fibrosis Pulmonar , Animales , Cromatografía Liquida , Medicamentos Herbarios Chinos , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/metabolismo
18.
Med Res Rev ; 41(3): 1539-1577, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33521978

RESUMEN

Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.


Asunto(s)
Cistanche , Medicamentos Herbarios Chinos , Animales , Comercio , Medicamentos Herbarios Chinos/farmacología , Especies en Peligro de Extinción , Humanos , Internacionalidad , Medicina Tradicional China
19.
Bioorg Chem ; 114: 105113, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175718

RESUMEN

From the 95% aqueous ethanol extract of Murraya microphylla, five pairs of new carbazole alkaloid enantiomers, (+/-)-microphylines N-R (1a/1b-5a/5b), were isolated, together with 20 known carbazole alkaloids. The structures of the new compounds were determined by the HRMS and NMR spectroscopic data, along with the calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. The known compound (+)-mahanine (21) showed significant cytotoxicities against Du145, HepG2, HeLa, and HCT-116 cell lines, and its possible mechanism was deduced to target on phosphoenolpyruvate carboxykinase 2 (PCK2) protein via surface plasmon resonance (SPR) and molecular docking.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Carbazoles/farmacología , Inhibidores Enzimáticos/farmacología , Murraya/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Alcaloides/química , Alcaloides/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Carbazoles/química , Carbazoles/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Relación Estructura-Actividad
20.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070111

RESUMEN

Cephalotaxine (CET) is a natural alkaloid with potent antileukemia effects. However, its underlying molecular mechanism has not been well understood. In this study, we verified that CET significantly inhibited the viability of various leukemia cells, including HL-60, NB4, Jurkat, K562, Raji and MOLT-4. RNA-sequencing and bioinformatics analysis revealed that CET causes mitochondrial function change. Mechanism research indicated that CET activated the mitochondrial apoptosis pathway by reducing the mitochondrial membrane potential, downregulating anti-apoptotic Bcl-2 protein and upregulating pro-apoptotic Bak protein. In addition, the autophagy signaling pathway was highly enriched by RNA-seq analysis. Then, we found that CET blocked the fluorescence colocation of MitoTracker Green and LysoTracker Red and upregulated the level of LC3-II and p62, which indicated that autophagy flow was impaired. Further results demonstrated that CET could impair lysosomal acidification and block autophagy flow. Finally, inhibiting autophagy flow could aggravate apoptosis of HL-60 cells induced by CET. In summary, this study demonstrated that CET exerted antileukemia effects through activation of the mitochondria-dependent pathway and by impairing autophagy flow. Our research provides new insights into the molecular mechanisms of CET in the treatment of leukemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Homoharringtonina/farmacología , Leucemia/patología , Mitocondrias/metabolismo , Apoptosis/genética , Autofagia/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homoharringtonina/química , Humanos , Leucemia/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA