Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 28, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38159118

RESUMEN

Cyclophilin A (CypA), the first member of cyclophilins, is distributed extensively in eukaryotic and prokaryotic cells, primarily localized in the cytoplasm. In addition to acting as an intracellular receptor for cyclosporin A (CSA), CypA plays a crucial role in diseases such as aging and tumorigenesis. Apoptosis, a form of programmed cell death, is able to balance the rate of cell viability and death. In this review, we focus on the effects of CypA on apoptosis and the relationship between specific mechanisms of CypA promoting or inhibiting apoptosis and diseases, including tumorigenesis, cardiovascular diseases, organ injury, and microbial infections. Notably, the process of CypA promoting or inhibiting apoptosis is closely related to disease development. Finally, future prospects for the association of CypA and apoptosis are discussed, and a comprehensive understanding of the effects of CypA on apoptosis in relation to diseases is expected to provide new insights into the design of CypA as a therapeutic target for diseases. KEY POINTS: • Understand the effect of CypA on apoptosis. • CypA affects apoptosis through specific pathways. • The effect of CypA on apoptosis is associated with a variety of disease processes.


Asunto(s)
Ciclofilina A , Ciclosporina , Humanos , Ciclofilina A/metabolismo , Ciclosporina/metabolismo , Proteínas Portadoras , Apoptosis , Carcinogénesis
2.
Environ Res ; 212(Pt C): 113443, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550809

RESUMEN

In the marine environment, the interactions among various species based on chemical signals play critical roles in influencing microbial structure and function. Quorum sensing (QS), the well-known signal-dependent communication autoinducer, is an important regulator in complex microbial communities. Here, we explored the QS gene profiles of phycosphere bacteria during a microcosmic phytoplankton bloom using metagenomic sequence data. More than fifteen subtypes of QS systems and 211,980 non-redundant amino acid sequences were collected and classified for constructing a hierarchical quorum-sensing database. The abundance of the various QS subtypes varied at different bloom stages and showed a strong correlation with phycosphere microorganisms. This suggested that QS is involved in regulating the phycosphere microbial succession during an algal bloom. A neutral community model revealed that the QS functional gene community assemblies were driven by stochastic processes. Co-occurrence model analysis showed that the QS gene networks of phycospheric microbes had similar topological structure and functional composition, which is a potential cornerstone for maintaining signal communication and population stabilization among microorganisms. Overall, QS systems have a strong relationship with the development of algal blooms and participate in regulating algal-associated microbial communities as chemical signals. This research reveals the chemical and ecological behavior of algal symbiotic bacteria and expands the current understanding of microbial dynamics in marine algal blooms.


Asunto(s)
Microbiota , Percepción de Quorum , Bacterias/metabolismo , Eutrofización , Fitoplancton/genética
3.
Appl Microbiol Biotechnol ; 106(19-20): 6657-6669, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36066653

RESUMEN

By interacting with the receptor on the host cells membrane, Mycoplasma genitalium, a prokaryotic bacterium primarily transmitted through sexual contact, can adhere to and even enter cells. The adhesion protein of M. genitalium (MgPa) plays a critical function in the adhering and subsequent invasion into host cells. Our prior studies verified that cyclophilin A (CypA) was the receptor of MgPa on human urethral epithelial cells (SV-HUC-1) membrane and could induce pro-inflammatory cytokines production through the CypA-CD147-ERK-NF-κB pathway. This research aims to understand how MgPa interacts with its membrane receptor CypA to cause apoptosis in host cells. We employed flow cytometry to see if MgPa prevents or enhances apoptosis of SV-HUC-1 cells. The apoptosis-related proteins such as Bax, caspase-3, and cleaved caspase-3 were assayed using Western blot. Results suggested that MgPa could inhibit the apoptosis of SV-HUC-1 cells. And we demonstrated that interference with the expression of CypA or CD147 significantly reversed the inhibitory effect of MgPa on SV-HUC-1 cells apoptosis, indicating that MgPa inhibited urothelial cells apoptosis through CypA/CD147. Furthermore, we discovered that MgPa regulates the PI3K/Akt/NF-κB pathway through CypA/CD147 to inhibit SV-HUC-1 cells apoptosis. Ultimately, the inhibitory effect of MgPa on the apoptosis of the urothelial epithelial cells extracted from CypA-knockout mice was validated by Annexin V/PI assay. The results corroborated that MgPa could also inhibit mouse urothelial epithelial cells apoptosis. In summary, we demonstrated that MgPa could inhibit SV-HUC-1 cells apoptosis via regulating the PI3K/Akt/NF-κB pathway through CypA/CD147, providing experimental evidence for elucidating the survival strategies of M. genitalium in host cells. KEY POINTS: • M. genitalium protein of adhesion inhibited human urethral epithelial cells apoptosis through CypA-CD147 activating the signal pathway of PI3K/Akt/NF-κB • The knockdown of CypA and CD147 could downregulate the M. genitalium -activated PI3K/Akt/NF-κB pathway in SV-HUC-1 cells • MgPa could inhibit the apoptosis of normal C57BL mouse primary urethral epithelial cells, but not for CypA-knockout C57BL mouse primary urethral epithelial cells.


Asunto(s)
Mycoplasma genitalium , Animales , Anexina A5/farmacología , Apoptosis , Basigina/metabolismo , Proteínas Portadoras/farmacología , Caspasa 3/metabolismo , Ciclofilina A/metabolismo , Ciclofilina A/farmacología , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
4.
Int J Immunogenet ; 49(2): 70-82, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958532

RESUMEN

Genetic and immune factors play an important role in tuberculosis. Under different ethnicities and genetic backgrounds, different immune and inflammation-related gene polymorphisms may confer different susceptibility to tuberculosis. This study investigated the relationship between immune and inflammation-related gene polymorphism and susceptibility to tuberculosis in Xinjiang Uyghur population, China. In this case-control study, we enrolled 507 pulmonary tuberculosis patients and 454 healthy controls from Southern Xinjiang. single nucleotide polymorphism (SNP) genotyping was performed. The 12 SNPs of nine immune and inflammation-related genes (including TNF rs361525, IL6 rs2066992 and rs1524107, IL17A rs3748067, IL17F rs763780, VDR rs731236, rs2228570 and rs1544410, IFNGR1 rs1327474, P2RX7 rs3751143, CTAGE1 rs4331426 and Toll-like receptor 4 (TLR4) rs4986790) and their relationship with tuberculosis were evaluated. The T allele and TT genotype of IL-6 rs2066992 and rs1524107 increased the risk of active tuberculosis. The C allele of IFNGR1 rs1327474 was related to the reduced risk of tuberculosis in the Xinjiang Uyghur population. The G allele and AG/GG genotypes of TLR4 rs4986790 were associated with an increased risk of tuberculosis (p < .05). Furthermore, haplotype analysis found that the haplotype TT of interleukin (IL)-6 was a risk factor, whereas the CG type was a protective factor for active tuberculosis in the Xinjiang Uyghur population. There were three immune and inflammation-related genes (IL-6, IFNGR1 and TLR4) and a total of four SNPs (rs2066992, rs1524107, rs1327474 and rs4986790) related to the susceptibility of the Uyghur population to tuberculosis. Our findings may provide evidence for further understanding the mechanism of tuberculosis susceptibility in the Xinjiang Uyghur population.


Asunto(s)
Predisposición Genética a la Enfermedad , Tuberculosis , Estudios de Casos y Controles , China/epidemiología , Frecuencia de los Genes , Genotipo , Humanos , Inflamación , Polimorfismo de Nucleótido Simple , Tuberculosis/genética
5.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409199

RESUMEN

Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Oxidantes/farmacología , Polen , Agua de Mar/microbiología
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232925

RESUMEN

Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × â™‚ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.


Asunto(s)
Lubina , Coinfección , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Acuicultura , Lubina/genética , Coinfección/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Prevalencia , Vibrio/genética , Vibriosis/epidemiología , Vibriosis/microbiología , Vibriosis/veterinaria
7.
J Environ Manage ; 323: 116252, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126600

RESUMEN

Bacillus as a predominant genus of enzyme-producing bacteria presents desirable features to fulfill the vast demand of specific industries, whereas the knowledge of the Bacillus communities and their capacities of producing industrial hydrolytic enzymes across the microhabitats of the Paracel Islands is limited. Herein, a total of 193 culturable Bacillus strains belonging to 19 species were isolated across the microhabitats of seawater, sediment, coral and seagrass, covering 39 stations of the Paracel Islands. Each microhabitat displayed its unique species, while the species of Bacillus paramycoides besides being the dominant species with an abundance of 54.94% also was the only species shared by all microhabitats of the Paracel Islands. Of the Bacillus communities, 97.41% of the isolates exhibited the capacity of producing one-or-more types of enzymes with comparatively higher and broader ranges of enzyme activities, including 163 protease-, 27 cellulase-, 118 alginate lyase-, 140 K-carrageenase- and 158 agarose-producing strains. By the correlation analyses of "Bacillus-environmental factors" and "Enzyme-producing Bacillus-environmental factors", the cross-habitat distribution and enzyme-producing capacity pattern of the Bacillus communities were strongly driven by habitat type, and the environmental factors made habitat-dependent differential contributions to that in the Paracel Islands. It's worth noting that the cellulase-producing strain wasn't detected in seagrass due to its survival strategy to prevent cellulose degradation by inhibiting cellulase-producing bacteria, while coral contained more stable microbial metabolic functions to protect against environmental fluctuations. These findings besides providing large quantities of promising enzyme-producing candidates for specific industrial desires, also facilitate the development and utilization of marine microbial resources and the environmental policy- and/or law-making according to environmental features across the microhabitats of the Paracel Islands.


Asunto(s)
Antozoos , Bacillus , Celulasa , Animales , Bacterias , Celulosa , Ecosistema , Islas , Péptido Hidrolasas , Sefarosa
8.
BMC Genomics ; 22(1): 176, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33706696

RESUMEN

BACKGROUND: Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS: LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION: Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.


Asunto(s)
Oryza , Plantones , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética , Temperatura , Transcriptoma
9.
BMC Plant Biol ; 21(1): 495, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706650

RESUMEN

BACKGROUND: Paphiopedilum hirsutissimum is a member of Orchidaceae family that is famous for its ornamental value around the globe, it is vulnerable due to over-exploitation and was listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents its trade across borders. Variation in flower color that gives rise to different flower patterns is a major trait contributing to its high ornamental value. However, the molecular mechanism underlying color formation in P. hirsutissimum still remains unexplored. In the present study, we exploited natural variation in petal and labellum color of Paphiopedilum plants and used comparative transcriptome analysis as well as pigment measurements to explore the important genes, metabolites and regulatory pathways linked to flower color variation in P. hirsutissimum. RESULT: We observed that reduced anthocyanin and flavonoid contents along with slightly higher carotenoids are responsible for albino flower phenotype. Comparative transcriptome analysis identified 3287 differentially expressed genes (DEGs) among normal and albino labellum, and 3634 DEGs between normal and albino petals. Two genes encoding for flavanone 3-hydroxylase (F3H) and one gene encoding for chalcone synthase (CHS) were strongly downregulated in albino labellum and petals compared to normal flowers. As both F3H and CHS catalyze essentially important steps in anthocyanin biosynthesis pathway, downregulation of these genes is probably leading to albino flower phenotype via down-accumulation of anthocyanins. However, we observed the downregulation of major carotenoid biosynthesis genes including VDE, NCED and ABA2 which was inconsistent with the increased carotenoid accumulation in albino flowers, suggesting that carotenoid accumulation was probably controlled at post-transcriptional or translational level. In addition, we identified several key transcription factors (MYB73, MYB61, bHLH14, bHLH106, MADS-SOC1, AP2/ERF1, ERF26 and ERF87) that may regulate structural genes involved in flower color formation in P. hirsutissimum. Importantly, over-expression of some of these candidate TFs increased anthocyanin accumulation in tobacco leaves which provided important evidence for the role of these TFs in flower color formation probably via regulating key structural genes of the anthocyanin pathway. CONCLUSION: The genes identified here could be potential targets for breeding P. hirsutissimum with different flower color patterns by manipulating the anthocyanin and carotenoid biosynthesis pathways.


Asunto(s)
Flores/genética , Flores/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Pigmentación/genética , Transcriptoma , China , Especies en Peligro de Extinción , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Fenotipo , Pigmentación/fisiología
10.
Appl Microbiol Biotechnol ; 105(4): 1365-1377, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33492451

RESUMEN

Cyclophilin A (CypA), a key member of the immunophilin family, is the most abundantly expressed isozyme of the 18 known human cyclophilins. Besides acting as an intracellular receptor for cyclosporine A, CypA plays a vital role in microorganismal infections, cardiovascular diseases, liver diseases, kidney diseases, neurodegeneration, cancer, rheumatoid arthritis, periodontitis, sepsis, asthma, and aging. This review focuses on the pivotal roles of CypA in the infection of etiological agents, which manifests mainly in promoting or inhibiting viral replication based on the host cell type and viral species. CypA can interact with viral proteins and thus regulate the replication cycle of the virus. CypA is involved in pathogenic bacterial infections by regulating the formation of host actin skeleton or membrane translocation of bacterial toxins, or mediated the adhesion of Mycoplasma genitalium during the infection processes by acting as a cellular receptor of M. genitalium. CypA also plays a critical role in infection or the life cycle of certain parasites or host immune regulation. Moreover, we summarized the current understanding of CypA inhibitors acting as host-targeting antiviral agents, thus opening an avenue for the treatment of multiple viral infections due to their broad antiviral effects and ability to effectively prevent drug resistance. Therefore, the antiviral effect of CypA has the potential to promote CypA inhibitors as host-targeting drugs to CypA-involved etiological agent infections and human diseases. KEY POINTS: • CypA is involved in the replication and infection of several viruses, pathogenic bacteria, mycoplasma, and parasites. • CypA inhibitors are in a strong position to inhibit the infection of viruses, bacterial, and mycoplasma.


Asunto(s)
Virosis , Virus , Antivirales/farmacología , Ciclofilina A/farmacología , Ciclosporina , Humanos , Replicación Viral
11.
Appl Microbiol Biotechnol ; 105(3): 1191-1201, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33439275

RESUMEN

Bacterial populations rely on quorum sensing (QS) to coordinate their behaviors and are often challenged by the fluctuation in oxygen concentrations in their habitats. Oxygen is a crucial factor that affects bacterial metabolism in multiple ways. However, little is known about whether and how oxygen availability affects QS activities. To fill this gap, we used the facultative anaerobe Novosphingobium pentaromativorans US6-1 as a model system, and observed that the QS signal acyl homoserine-lactones (AHLs) were produced only in anoxic environments, such as biofilm, or liquid medium that initially contained less than 2 mg/L dissolved oxygen, but not in highly oxic environments. Comparative transcriptome analysis revealed that oxygen availability significantly affected the physiological activities in US6-1, including fatty acid metabolism, oxidative phosphorylation, citrate cycle, QS activities, and flagellar assembly. The absence of AHLs in the oxic culture was not due to degradation, but to the very low expression of the AHL synthase gene novI. High concentration of NADH during the middle log phase under static cultivation may be a trigger for AHL synthesis. This is the first report that production of AHLs is coupled with anoxic metabolism in a facultative anaerobe, which extends our knowledge on factors affecting bacterial QS occurrence. KEY POINTS: • AHL production is anoxic cultivation related. • Oxygen availability affects AHL synthesis by influencing novI expression. • Oxygen availability changes many metabolism activities including NADH production.


Asunto(s)
Percepción de Quorum , Sphingomonadaceae , Acil-Butirolactonas , Proteínas Bacterianas/genética , Oxígeno , Sphingomonadaceae/genética
12.
Environ Microbiol ; 22(5): 1944-1962, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249540

RESUMEN

Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.


Asunto(s)
Antozoos/microbiología , Bacterias/metabolismo , Disbiosis/fisiopatología , Microbiota/fisiología , Percepción de Quorum/fisiología , Acil-Butirolactonas , Aeromonas/metabolismo , Animales , Cambio Climático , Arrecifes de Coral , Edwardsiella/metabolismo , Pseudomonas/metabolismo , Agua de Mar/microbiología , Transducción de Señal/fisiología , Simbiosis/fisiología , Vibrio/metabolismo
13.
Mar Drugs ; 18(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971837

RESUMEN

Quorum sensing inhibitors (QSIs) have been proven to be an innovative approach to interfering with biofilm formation, since this process is regulated by QS signals. However, most studies have focused on single-species biofilm formation, whereas studies of the effects of signal interference on the development of multispecies biofilm, especially in the natural environment, are still lacking. Here we develop and evaluate the anti-biofilm capability of a new QSI (rhodamine isothiocyanate analogue, RIA) in natural seawater. During the experiment, biofilm characteristics, microbial communities/functions and network interactions were monitored at 36, 80, and 180 h, respectively. The results showed that the biomass and 3D structure of the biofilm were significantly different in the presence of the QSI. The expression of genes involved in extracellular polysaccharide synthesis was also downregulated in the QSI-treated group. Dramatic differences in microbial composition, ß-diversity and functions between the RIA-treated group and the control group were also observed, especially in the early stage of biofilm development. Furthermore, co-occurrence model analysis showed that RIA reduced the complexity of the microbial network. This study demonstrates that rhodamine isothiocyanate analogue is an efficient QS inhibitor and has potential applications in controlling biofouling caused by multispecies biofilm, especially in the early stage of biofouling formation.


Asunto(s)
Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Percepción de Quorum/efectos de los fármacos , Rodaminas/farmacología , Rodaminas/química , Agua de Mar/microbiología , Factores de Tiempo
14.
Appl Microbiol Biotechnol ; 103(13): 5259-5267, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31069485

RESUMEN

Tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) is the leading cause of death among infectious diseases in the worldwide. Lack of more sensitive and effective diagnostic reagents has increased the awareness of rapid diagnosis for tuberculosis. In this study, T7 phage displayed genomic DNA library of M. tuberculosis was constructed to screen the antigens that specially bind with TB-positive serum from the whole genome of M. tuberculosis and to improve the sensitivity and specificity of tuberculosis serological diagnosis. After three rounds of biopanning, results of DNA sequencing and BLAST analysis showed that 19 positive phages displayed four different proteins and the occurrence frequency of the phage which displayed ribokinase was the highest. The results of indirect ELISA and dot immunoblotting indicated that representative phages could specifically bind to tuberculosis-positive serum. The prokaryotic expression vector containing the DNA sequence of ribokinase gene was then constructed and the recombinant protein was expressed and purified to evaluate the serodiagnosis value of ribokinase. The reactivity of the recombinant ribokinase with different clinical serum was detected and the sensitivities and specificities in tuberculosis serodiagnosis were 90% and 86%, respectively by screening serum from tuberculosis patients (n = 90) and uninfected individuals (n = 90) based on ELISA. Therefore, this study demonstrated that ribokinase had good potential for the serodiagnosis of tuberculosis.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Tuberculosis/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bacteriófago T7/genética , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Genoma Bacteriano , Biblioteca Genómica , Humanos , Immunoblotting , Lactante , Persona de Mediana Edad , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Recombinantes/genética , Sensibilidad y Especificidad , Pruebas Serológicas , Tuberculosis/sangre , Adulto Joven
15.
Int J Med Microbiol ; 308(3): 405-412, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29551599

RESUMEN

The Mycoplasma genitalium adhesion protein (MgPa), the most important outer membrane protein of M. genitalium, plays a vital role in the adhesion to and invasion of host cells by M. genitalium. Identification of MgPa receptors will help elucidate the pathogenic mechanism of M. genitalium. However, the receptor protein of MgPa has not been reported to date. In this study, an MgPa-binding protein with a molecular weight of approximately 17 kDa was screened from SV-HUC-1 cell membrane proteins by a modified virus overlay protein binding assay (VOPBA). Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the protein components of the 17-kDa protein. The results demonstrated that the MgPa-binding protein was most likely Cyclophilin A (CyPA). The binding activity and distribution of CyPA in SV-HUC-1 cells were detected using indirect ELISA, western blotting, far-western blotting and indirect immunofluorescence. We found that recombinant MgPa (rMgPa) could bind with CyPA from SV-HUC-1 cell membrane proteins and to recombinant CyPA, which indicated that CyPA was predominant component of the 17-kDa protein band and can interact with rMgPa. In addition, an indirect immunofluorescence assay showed that CyPA was partially distributed on the membrane surfaces of SV-HUC-1 cells and could partially inhibit the adhesion of rMgPa and M. genitalium to SV-HUC-1 cells. Co-localization assays further indicated that rMgPa and M. genitalium can interact with CyPA. These results suggested that the CyPA located on SV-HUC-1 cell membranes may be the potential receptor of MgPa, which could provide an experimental basis for elucidating the function of MgPa and the possible pathogenic mechanism of M. genitalium.


Asunto(s)
Adhesinas Bacterianas/química , Adhesión Bacteriana , Ciclofilina A/metabolismo , Mycoplasma genitalium/fisiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Humanos , Infecciones por Mycoplasma/microbiología , Mycoplasma genitalium/patogenicidad , Proteínas Recombinantes/química
16.
Microb Pathog ; 120: 140-146, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29709687

RESUMEN

Mycoplasma genitalium adhesion protein (MgPa) is a major adhesin of M. genitalium, a human pathogen associated with a series of genitourinary tract diseases. MgPa plays a very important role in M. genitalium adhering to the host cells. However, the exact receptor peptides or proteins of MgPa are still poorly understood so far. Three polypeptides (V-H-W-D-F-R-Q-W-W-Q-P-S), (D-W-S-S-W-V -Y-R-D-P-Q-T) and (H-Y-I-D-F-R-W) were previously screened from a phage display random peptide library using recombinant MgPa (rMgPa) as a target molecule. In this study, three polypeptides were artificially synthesized and investigated as to whether they are potential receptors of MgPa. We found that rMgPa specifically bound to three synthesized polypeptides as determined via an indirect enzyme-linked immunosorbent assay (ELISA). Moreover, three polypeptides were further identified by indirect immunofluorescence microscopy (IFM). We confirmed that rMgPa and M. genitalium can adhere to SV-HUC-1 cells in vitro and that anti-rMgPa antibody and three synthesized polypeptides can partially inhibit the adherence of rMgPa and M. genitalium to SV-HUC-1 cells. In summary, these three polypeptides may be the essential receptor peptides of MgPa, and may aid in enhancing the understanding of biological function of MgPa and the possible pathogenic mechanism of M. genitalium.


Asunto(s)
Bacteriófagos/metabolismo , Mycoplasma genitalium/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Adhesinas Bacterianas , Especificidad de Anticuerpos , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Infecciones por Mycoplasma , Péptidos/química , Unión Proteica , Proteínas Recombinantes/metabolismo
17.
World J Microbiol Biotechnol ; 34(6): 82, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29845357

RESUMEN

Nowadays, there is lack of effective serological detection method for Mycoplasma pneumoniae (M. pneumoniae) infection in clinic. In this study, the mimic epitopes of M. pneumoniae were screened to evaluate the role in the serodiagnosis of M. pneumoniae infection. The M. pneumoniae-positive serum was used as the target for biopanning to phage display random 7-peptide library. The positive phage clones were selected and the DNA were sequenced and analyzed by BLAST. The representative phages were identified using dot immunoblotting and ELISA. The exogenous heptapeptides were synthesized and their reactions with M. pneumonia-positive serum were tested by indirect ELISA. Two heptapeptides, namely heptapeptide 1: TVNFKLY and heptapeptide 2: LPQRLRT, were screened out from the randomly selected 40 phages after the four bio-panning rounds. They had high homologies to some M. pneumoniae antigens. Besides, the representative bacteriophage containing heptapeptide 1 or 2 could react with the M. pneumonia- positive serum. The sensitivities of heptapeptide 1 and heptapeptide 2 for the diagnosis of M. pneumoniae infection were 90.1 and 80.0%, respectively, and the specificities were 94.3 and 97.1%, respectively. Therefore the two heptapeptides were the mimic epitopes of M. pneumoniae and might have potential serological diagnosis value for M. pneumoniae infection.


Asunto(s)
Mycoplasma pneumoniae/inmunología , Neumonía por Mycoplasma/diagnóstico , Anticuerpos Antibacterianos/sangre , Estudios de Casos y Controles , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Masculino , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Biblioteca de Péptidos , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Neumonía por Mycoplasma/sangre , Neumonía por Mycoplasma/microbiología , Pruebas Serológicas
18.
Int J Syst Evol Microbiol ; 67(9): 3655-3659, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28879849

RESUMEN

A Gram-stain-negative, coccoid, yellow, non-motile, aerobic bacterium, designated strain S36T, was isolated from soil of the Xixi wetland in Zhejiang province, PR China. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain S36T could represent a novel species of genus Altererythrobacter showing highest similarity to Altererythrobacter atlanticus 26DY36T (96.31 % 16S rRNA gene sequence similarity). The temperature, pH and NaCl concentration ranges for growth were 10-37 °C (optimum 32 °C), pH 5.0-10.0 (optimum pH 7.0) and 0.5-3 % (optimum 1 %, w/v), respectively. The predominant respiratory quinone of strain S36T was Q-10. The major fatty acids were C16 : 0, C17 : 1ω6c, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The G+C content of the genomic DNA was 62.7 mol%. These data all support the affiliation of strain S36T to the genus Altererythrobacter. The polar lipids profile of strain S36T comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids and two unidentified glycolipids. The results of physiological and biochemical tests allowed differentiation of strain S36T from other members of the genus Altererythrobacter. Therefore, strain S36T represents a novel species of the genus Altererythrobacter, for which the name Altererythrobacter xixiisoli sp. nov. is proposed; the type strain is S36T (=CGMCC 1.12804T=NBRC 110413T).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Microbiología del Suelo , Humedales , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
19.
Antonie Van Leeuwenhoek ; 110(7): 877-889, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28337567

RESUMEN

It is believed that sphingomonads are ubiquitously distributed in environments. However detailed information about their community structure and their co-relationship with environmental parameters remain unclear. In this study, novel sphingomonads-specific primers based on the 16S rRNA gene were designed to investigate the distribution of sphingomonads in 10 different niches. Both in silico and in-practice tests on pure cultures and environmental samples showed that Sph384f/Sph701r was an efficient primer set. Illumina MiSeq sequencing revealed that community structures of sphingomonads were significantly different among the 10 samples, although 12 sphingomonad genera were present in all samples. Based on RDA analysis and Monte Carlo permutation test, sphingomonad community structure was significantly correlated with limnetic and marine habitat types. Among these niches, the genus Sphingomicrobium showed strong positive correlation with marine habitats, whereas genera Sphingobium, Novosphingobium, Sphingopyxis, and Sphingorhabdus showed strong positive correlation with limnetic habitats. Our study provided direct evidence that sphingomonads are ubiquitously distributed in environments, and revealed for the first time that their community structure can be correlated with habitats.


Asunto(s)
Ecosistema , Filogenia , ARN Ribosómico 16S , Sphingomonadaceae/genética , ADN Bacteriano , ADN Ribosómico , Sphingomonadaceae/fisiología
20.
Appl Environ Microbiol ; 82(18): 5587-94, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27401973

RESUMEN

UNLABELLED: Anoxygenic phototrophs represent an environmentally important and phylogenetically diverse group of organisms. They harvest light using bacteriochlorophyll-containing reaction centers. Recently, a novel phototrophic bacterium, Gemmatimonas phototrophica, belonging to a rarely studied phylum, Gemmatimonadetes, was isolated from a freshwater lake in the Gobi Desert. To obtain more information about the environmental distribution of phototrophic Gemmatimonadetes, we collected microbial samples from the water column, upper sediment, and deeper anoxic sediment of Lake Taihu, China. MiSeq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria Our results showed that most of the phototrophic species in Lake Taihu belong to Alpha- and Betaproteobacteria Sequences of green sulfur and green nonsulfur bacteria (phototrophic Chlorobi and Chloroflexi, respectively) were found in the sediment. Using the newly designed primers, we identified a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was <1%. IMPORTANCE: Photosynthesis is one of the most fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers were used to identify phototrophic Gemmatimonadetes from planktonic and sediment samples collected in Lake Taihu, China. The Gemmatimonadetes sequences were found mostly in the upper sediments, documenting the preference of Gemmatimonadetes for semiaerobic conditions. Our results also show that the phototrophic Gemmatimonadetes present in Lake Taihu were relatively diverse, encompassing 30 operational taxonomic units.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biota , Sedimentos Geológicos/microbiología , Lagos/microbiología , Bacterias/enzimología , Proteínas Bacterianas/genética , China , Cartilla de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA