Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868208

RESUMEN

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Asunto(s)
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animales , Humanos , Ratones , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Disfunción Cognitiva/metabolismo , Reacciones Cruzadas , Parabiosis , Proteómica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Síndrome de Down/sangre , Síndrome de Down/metabolismo
2.
PLoS Biol ; 17(12): e3000525, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841517

RESUMEN

Ubiquitin-specific protease (USP) 6 is a hominoid deubiquitinating enzyme previously implicated in intellectual disability and autism spectrum disorder. Although these findings link USP6 to higher brain function, potential roles for USP6 in cognition have not been investigated. Here, we report that USP6 is highly expressed in induced human neurons and that neuron-specific expression of USP6 enhances learning and memory in a transgenic mouse model. Similarly, USP6 expression regulates N-methyl-D-aspartate-type glutamate receptor (NMDAR)-dependent long-term potentiation and long-term depression in USP6 transgenic mouse hippocampi. Proteomic characterization of transgenic USP6 mouse cortex reveals attenuated NMDAR ubiquitination, with concomitant elevation in NMDAR expression, stability, and cell surface distribution with USP6 overexpression. USP6 positively modulates GluN1 expression in transfected cells, and USP6 down-regulation impedes focal GluN1 distribution at postsynaptic densities and impairs synaptic function in neurons derived from human embryonic stem cells. Together, these results indicate that USP6 enhances NMDAR stability to promote synaptic function and cognition.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Encéfalo/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Ubiquitina Tiolesterasa/genética
3.
Neurochem Res ; 42(12): 3548-3558, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28932945

RESUMEN

Necrostatin-1 (Nec-1) has been shown to inhibit necroptosis and convey a significant protective effect after spinal cord injury (SCI). This small molecule inhibitor may reduce tissue damage and restore neurological function by lessening mitochondrial injury after SCI and preserving energy homeostasis. However, the effects of Nec-1 on endoplasmic reticulum stress (ERS)-an important pathological consequence of SCI-are still not clear. The present study investigates the relationship between necroptosis and ERS in a rat model of SCI. Electron microscopy was employed to observe ultra-structural changes in the endoplasmic reticulum and mitochondria after lesioning. Real-time quantitative PCR was used to measure the mRNA levels of ERS-related pro-apoptotic molecules such as C/EBP homologous protein (CHOP), immunoglobulin-binding protein (BiP/GRP78) and X box-binding protein-1 (XBP-1). Western blot and immunofluorescence were conducted to analyze CHOP, GRP78 and XBP-1 protein expression after lesioning. Results demonstrated that applying Nec-1 in SCI reduces ultra-structural damage to the endoplasmic reticulum and mitochondria and inhibits expression of ERS-related genes and proteins after lesioning. Immunofluorescence also shows ERS-related proteins mainly expressed in the cytoplasm of nerve cells. Taken together, these results demonstrate that Nec-1 has protective effect on the endoplasmic reticulum and mitochondria and alleviates ERS after SCI.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Imidazoles/farmacología , Indoles/farmacología , Traumatismos de la Médula Espinal/metabolismo , Animales , Apoptosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Masculino , Mitocondrias/metabolismo , Necrosis/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Factor de Transcripción CHOP/metabolismo
4.
Mol Neurodegener ; 15(1): 40, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677986

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid ß (Aß) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aß- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aß-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Humanos
5.
Front Cell Dev Biol ; 8: 595357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330482

RESUMEN

Abnormal synaptic transmission leads to learning and memory disorders and is the main feature of neurological diseases. Sorting nexin 27 (SNX27) is an endosomal adaptor protein associated with a variety of nervous system diseases, and it is mainly responsible for the trafficking of postsynaptic membrane receptors. However, the roles of SNX27 in regulating synaptic and cognitive function are not fully understood. Here, we first generated a neuron-specific human-SNX27 transgenic mouse model (hSNX27 Tg) that exhibited enhanced excitatory synaptic transmission and long-term potentiation (LTP). In addition, we found that the hSNX27 Tg mice displayed enhanced learning and memory, lower-level anxiety-like behavior, and increased social interaction. Furthermore, we found that SNX27 overexpression upregulated the expression of glutamate receptors in the cortex and hippocampus of hSNX27 Tg mice. Together, these results indicate that SNX27 overexpression promotes synaptic function and cognition through modulating glutamate receptors.

6.
Front Neurol ; 9: 1059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619032

RESUMEN

Sorting nexin 27 (SNX27) is an endosome-associated cargo adaptor that is involved in various pathologies and development of neurological diseases. However, the role of SNX27 in spinal cord injury (SCI) remains unclear. In this study, we found that SNX27 was up-regulated in injured mice spinal cords by western blot and immunofluorescence. A comparative analysis of Basso mouse scale (BMS), footprint test and corticospinal tract (CST) tracing in Snx27 +/+ and Snx27 +/- mice revealed that haploinsufficiency of SNX27 ameliorated the clinical symptoms of SCI. Based on the results of western blot and immunofluorescence, mechanistically, we found that SNX27 deficiency suppresses apoptotic caspase-3 induced neuronal death. In addition, SNX27 haploinsufficiency lowers the infiltration and activation of macrophage/microglia by suppressing their proliferation at the SCI lesion site. Together, these results suggest that down-regulation of SNX27 is a potential therapy targeting both acute neuronal death and chronic neuroinflammation, and promoting nerve repair after SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA