Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 45: 128133, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34044121

RESUMEN

We describe the synthesis and biological evaluation of a series of novel aryl sulfonamides that exhibit potent inhibition of NaV1.5. Unlike local anesthetics that are currently used for treatment of Long QT Syndrome 3 (LQT-3), the most potent compound (-)-6 in this series shows high selectivity over hERG and other cardiac ion channels and has a low brain to plasma ratio to minimize CNS side effects. Compound (-)-6 is also effective inshortening prolonged action potential durations (APDs) in a pharmacological model of LQT-3 syndrome in pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Unlike most aryl sulfonamide NaV inhibitors that bind to the channel voltage sensors, these NaV1.5 inhibitors bind to the local anesthetic binding site in the central pore of the channel.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sulfonamidas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
2.
Bioorg Med Chem Lett ; 24(18): 4397-4401, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25176194

RESUMEN

The voltage gated sodium channel Nav1.7 represents an interesting target for the treatment of pain. Human genetic studies have identified the crucial role of Nav1.7 in pain signaling. Herein, we report the design and synthesis of a novel series of benzenesulfonamide-based Nav1.7 inhibitors. Structural-activity relationship (SAR) studies were undertaken towards improving Nav1.7 activity and minimizing CYP inhibition. These efforts resulted in the identification of compound 12k, a highly potent Nav1.7 inhibitor with a thousand-fold selectivity over Nav1.5 and negligible CYP inhibition.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Sulfonamidas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bencenosulfonamidas
3.
Br J Pharmacol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922847

RESUMEN

BACKGROUND AND PURPOSE: Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH: We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS: Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS: Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.

4.
Bioorg Med Chem ; 21(24): 7724-34, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24211162

RESUMEN

Endothelial lipase (EL) activity has been implicated in HDL metabolism and in atherosclerotic plaque development; inhibitors are proposed to be efficacious in the treatment of dyslipidemia related cardiovascular disease. We describe here the discovery of a novel class of anthranilic acids EL inhibitors. XEN445 (compound 13) was identified as a potent and selective EL inhibitor, that showed good ADME and PK properties, and demonstrated in vivo efficacy in raising plasma HDLc concentrations in mice.


Asunto(s)
Benzoatos/farmacología , HDL-Colesterol/sangre , HDL-Colesterol/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Pirrolidinas/farmacología , Animales , Benzoatos/síntesis química , Benzoatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Lipasa/deficiencia , Lipasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
5.
Elife ; 112022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35234610

RESUMEN

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Animales , Mutación con Ganancia de Función , Ratones , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/fisiología , Ratas , Sodio , Bloqueadores de los Canales de Sodio/farmacología
6.
J Med Chem ; 64(6): 2953-2966, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33682420

RESUMEN

Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.


Asunto(s)
Azetidinas/farmacología , Benzamidas/farmacología , Descubrimiento de Drogas , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Sulfonamidas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Azetidinas/química , Azetidinas/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Células Cultivadas , Células HEK293 , Humanos , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacología , Ratas Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética
7.
J Med Chem ; 62(21): 9618-9641, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31525968

RESUMEN

Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.


Asunto(s)
Amidas/química , Sistema Nervioso Central/metabolismo , Epilepsia/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Animales , Perros , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.6/química , Dominios Proteicos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-Actividad
8.
J Med Chem ; 62(2): 908-927, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30499663

RESUMEN

Herein, we report the discovery and optimization of a series of orally bioavailable acyl sulfonamide NaV1.7 inhibitors that are selective for NaV1.7 over NaV1.5 and highly efficacious in in vivo models of pain and hNaV1.7 target engagement. An analysis of the physicochemical properties of literature NaV1.7 inhibitors suggested that acyl sulfonamides with high fsp3 could overcome some of the pharmacokinetic (PK) and efficacy challenges seen with existing series. Parallel library syntheses lead to the identification of analogue 7, which exhibited moderate potency against NaV1.7 and an acceptable PK profile in rodents, but relatively poor stability in human liver microsomes. Further, design strategy then focused on the optimization of potency against hNaV1.7 and improvement of human metabolic stability, utilizing induced fit docking in our previously disclosed X-ray cocrystal of the NaV1.7 voltage sensing domain. These investigations culminated in the discovery of tool compound 33, one of the most potent and efficacious NaV1.7 inhibitors reported to date.


Asunto(s)
Analgésicos/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Sulfonamidas/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Sitios de Unión , Diseño de Fármacos , Semivida , Humanos , Masculino , Ratones , Ratones Transgénicos , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/patología , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Sulfonamidas/metabolismo , Sulfonamidas/uso terapéutico , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
9.
J Med Chem ; 61(11): 4810-4831, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29737846

RESUMEN

The sodium channel NaV1.7 has emerged as a promising target for the treatment of pain based on strong genetic validation of its role in nociception. In recent years, a number of aryl and acyl sulfonamides have been reported as potent inhibitors of NaV1.7, with high selectivity over the cardiac isoform NaV1.5. Herein, we report on the discovery of a novel series of N-([1,2,4]triazolo[4,3- a]pyridin-3-yl)methanesulfonamides as selective NaV1.7 inhibitors. Starting with the crystal structure of an acyl sulfonamide, we rationalized that cyclization to form a fused heterocycle would improve physicochemical properties, in particular lipophilicity. Our design strategy focused on optimization of potency for block of NaV1.7 and human metabolic stability. Lead compounds 10, 13 (GNE-131), and 25 showed excellent potency, good in vitro metabolic stability, and low in vivo clearance in mouse, rat, and dog. Compound 13 also displayed excellent efficacy in a transgenic mouse model of induced pain.


Asunto(s)
Diseño de Fármacos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Sulfonamidas/química , Sulfonamidas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos , Animales , Perros , Estabilidad de Medicamentos , Humanos , Cinética , Ratones , Conformación Molecular , Dolor/metabolismo , Ratas , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapéutico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA