Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102537

RESUMEN

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

2.
Proc Natl Acad Sci U S A ; 121(24): e2311180121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830101

RESUMEN

As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.

3.
Proc Natl Acad Sci U S A ; 121(30): e2404013121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39024111

RESUMEN

Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.

4.
Small ; 20(31): e2311984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461526

RESUMEN

A major issue with Fenton-like reaction is the excessive consumption of H2O2 caused by the sluggish regeneration rate of low-valent metal, and how to improve the activation efficiency of H2O2 has become a key in current research. Herein, a nano-heterostructure catalyst (1.0-MnCu/C) based on nano-interface engineering is constructed by supporting Cu and MnO on carbon skeleton, and its kinetic rate for the degradation of tetracycline hydrochloride is 0.0436 min-1, which is 2.9 times higher than that of Cu/C system (0.0151 min-1). The enhancement of removal rate results from the introduced Mn species can aggregate and transfer electrons to Cu sites through the electron bridge Mn-N/O-Cu, thus preventing Cu2+ from oxidizing H2O2 to form O2 •-, and facilitating the reduction of Cu2+ and generating more reactive oxygen species (1O2 and ·OH) with stronger oxidation ability, resulting in H2O2 utilization efficiency is 1.9 times as much as that of Cu/C. Additionally, the good and stable practical application capacity in different bodies demonstrates that it has great potential for practical environmental remediation.

5.
Environ Sci Technol ; 58(3): 1625-1635, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207092

RESUMEN

The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.


Asunto(s)
Nanotubos de Carbono , Peróxidos/química , Oxidación-Reducción , Clorobencenos
6.
Angew Chem Int Ed Engl ; 63(23): e202319470, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566301

RESUMEN

Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.

7.
Angew Chem Int Ed Engl ; 63(30): e202406795, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38708785

RESUMEN

The accumulation of plastic waste poses a pressing environmental challenge. Catalytic conversion stands out as an ideal approach for plastics upcycling, particularly through solar-driven plastics photoreforming. However, due to the common effects of multiple reactive oxygen species (ROS), selectively generating high-value chemicals becomes challenging. In this study, we developed a universal strategy to achieve >85 % selective production of diesel olefins (C15-C28) from polyolefin waste plastics via single ROS. Using tetrakis (4-carboxyphenyl) porphyrin supramolecular (TCPP) with different central metals as an example to regulate single ROS generation, results show Ni-TCPP facilitates triplet exciton production, yielding 1O2, while Zn-TCPP generates ⋅O2 - due to its strong built-in electric field (IEF). 1O2 directly dechlorinates polyvinyl chloride (PVC) due to the electro-negativity of chlorine atoms and the low dissociation energy of C-Cl bonds, while ⋅O2 - promotes direct dehydrogenation of polyethylene (PE) due to the electro-positivity of hydrogen atoms and the high dissociation energy of C-H bonds. This method is universally applicable to various single ROS systems. Installation experiments further affirm the application potential, achieving the highest diesel olefin production of 76.1 µmol h-1. Such a universally adaptive approach holds promise for addressing the global plastic pollution problem.

8.
J Colloid Interface Sci ; 674: 993-1003, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964003

RESUMEN

The Sabatier principle in heterogeneous catalysis provides guidance for designing optimal catalysts with the highest activity. We report a new Sabatier phenomenon induced by nanoclusters on different atomic scales in gas-sensitive reactions. We prepared a series of Ag nanocluster catalysts with coordination structures ranging from Ag0 to Ag13 through a surface coordination strategy. When used as catalysts for gas-sensitive reactions, a volcano-type relationship between the coordination number of Ag nanoclusters and gas-sensitive activity emerges, with a summit at a moderate coordination of Ag5. Mechanistic studies show that the efficient adsorption of activated *C2H6O on electron-rich Ag5 clusters is a key factor for the Sabatier phenomenon (adsorption energy from -0.322 eV to -0.663 eV), which leads to highly selective sensing. We found that the catalyst electron-rich surface layer induced by Ag5 clusters serves as a descriptor to explain the structure-activity relationship. Furthermore, due to the well-defined geometric and electronic structures in the Ag5 clusters, the optimized catalyst achieves both maximum activity and selectivity in chemoselective sensing reactions. This study reveals the Sabatier principle and provides insightful guidance for the rational design of more efficient and practical nanocluster catalysts for heterogeneous catalysis.

9.
Nat Commun ; 15(1): 6364, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075042

RESUMEN

Nitroaromatic compounds (NACs) with electron-withdrawing nitro (-NO2) groups are typical refractory pollutants. Despite advanced oxidation processes (AOPs) being appealing degradation technologies, inefficient ring-opening oxidation of NACs and practical large-scale applications remain challenges. Here we tackle these challenges by designing a reduction-oxidation coupling (ROC) degradation process in LaFe0.95Cu0.05O3@carbon fiber cloth (LFCO@CFC)/PMS/Vis continuous flow system. Cu doping enhances the photoelectron transfer, thus triggering the -NO2 photoreduction and breaking the barriers in the ring opening. Also, it modulates surface electronic configuration to generate radicals and non-radicals for subsequent oxidation of reduction products. Based on this, the ROC process can effectively remove and mineralize NACs under the environmental background. More importantly, the LFCO catalyst outperformed most of the recently reported catalysts with lower cost (13.72 CNY/ton) and higher processing capacity (3600 t/month). Furthermore, the high scalability, material durability, and catalytic activity of LFCO@CFC under various realistic environmental conditions prove the potential ability for large-scale applications.

10.
Water Res ; 254: 121373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447374

RESUMEN

As a kind of novel and persistent environmental pollutants, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been frequently detected in different aquatic environment, posing potential risks to public health and ecosystems, resulting in a biosecurity issue that cannot be ignored. Therefore, in order to control the spread of antibiotic resistance in the environment, advanced oxidation technology (such as Fenton-like, photocatalysis, electrocatalysis) has become an effective weapon for inactivating and eliminating ARB and ARGs. However, in the process of advanced oxidation technology, studying and regulating catalytic active sites at the molecular level and studying the adsorption and surface oxidation reactions between catalysts and ARGs can achieve in-depth exploration of the mechanism of ARGs removal. This review systematically reveals the catalytic sites and related mechanisms of catalytic antagonistic genes in different advanced oxidation processes (AOPs) systems. We also summarize the removal mechanism of ARGs and how to reduce the spread of ARGs in the environment through combining a variety of characterization methods. Importantly, the potential of various catalysts for removing ARGs in practical applications has also been recognized, providing a promising approach for the deep purification of wastewater treatment plants.


Asunto(s)
Bacterias , Genes Bacterianos , Bacterias/genética , Aguas Residuales , Ecosistema , Antagonistas de Receptores de Angiotensina/farmacología , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología
11.
J Hazard Mater ; 466: 133321, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301438

RESUMEN

Heteroatom doping represents a promising strategy for enhancing the generation of singlet oxygen (1O2) during the activation of peroxymonosulfate (PMS) using carbon-based catalysts; however, it remains a formidable challenge. In this study, we systematically controlled the structure of metal-free carbon-based materials by introducing different heteroatoms to investigate their efficacy in degrading organic pollutants in water via PMS activation. The results of reactive oxygen species detection showed that the dominant free radical in the four samples was different: CN (•SO4- and •OH), CNS (•O2-), CNCl (1O2), and CNClS (1O2). This led to the transformation of active species from free radicals to non-free radicals. The tri-doped carbons with nitrogen, sulfur, and chlorine (CNClS) exhibited exceptional performance in PMS activation and achieved a remarkable degradation efficiency of 95% within just 6 min for tetracycline. Moreover, a strong linear correlation was observed between the ratio of pyridine-N/graphite-N and ID/IG with the yield of 1O2, indicating that N species and defects play a crucial role in CNClS as they facilitate the transition from radical to non-radical pathways during PMS activation. These findings highlight the possibility that adjustable tri-heteroatom doping will expand the Fenton-like reaction for the treatment of actual wastewater.

12.
J Hazard Mater ; 475: 134907, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878442

RESUMEN

In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.


Asunto(s)
Antibacterianos , Carbón Orgánico , Grafito , Hierro , Sulfadiazina , Sulfatos , Carbón Orgánico/química , Sulfadiazina/química , Antibacterianos/química , Antibacterianos/farmacología , Hierro/química , Hierro/metabolismo , Grafito/química , Sulfatos/química , Sulfatos/metabolismo , Contaminantes Químicos del Agua/química , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Purificación del Agua/métodos , Peróxidos/química
13.
J Hazard Mater ; 471: 134422, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677118

RESUMEN

Electron transfer pathways have been verified as overriding regimes when peroxydisulfate (PDS) was activated by porous carbon. The incorporation of graphitic structure into carbon matrix was favorable to the rapid electron transfer, but excessive graphitization would deteriorate the specific surface area (SSA), weakening the catalytic performance. The reasonable trade-off between SSA and graphitization degree was necessary and challenging for the preparation of efficient carbon based PS-activators. Herein, a series of graphitic porous carbon with discrepant SSA and graphitic structure were fabricated. The incorporation of graphitization tracks into ultra-thin edges on porous carbon film was verified by multifarious structural characterization. After trade-off, the optimum catalyst exhibited superior catalytic performance with degradation rate constant (kobs) exceeding that of ungraphitized precursor by up to 16.0 times. Mechanistic investigations substantiated that the sufficient SSA of catalyst provided favorable conditions for its affinity towards PDS and sulfadiazine (SDZ), resulting in the formation of PDS* complexes and SDZ adsorption, while the appropriate graphitization degree ensured the reinforced electron transfer rate, which collectively accelerated SDZ oxidation through electron-transfer pathway. The multivariate linear regression model linking kobs to SSA and graphitization degree was established providing basis to construct efficient catalysts for PDS activation.

14.
Water Res ; 251: 121106, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38183841

RESUMEN

The selective transformation of organics from wastewater to value-added chemicals is considered an upcycling process beneficial for carbon neutrality. Herein, we present an innovative electrocatalytic oxidation (ECO) system aimed at achieving the selective conversion of phenols in wastewater to para-benzoquinone (p-BQ), a valuable chemical widely utilized in the manufacturing and chemical industries. Notably, 96.4% of phenol abatement and 78.9% of p-BQ yield are synchronously obtained over a preferred carbon cloth-supported ruthenium nanoparticles (Ru/C) anode. Such unprecedented results stem from the weak Ru-O bond between the Ru active sites and generated p-BQ, which facilitates the desorption of p-BQ from the anode surface. This property not only prevents the excessive oxidation of the generated p-BQ but also reinstates the Ru active sites essential for the rapid ECO of phenol. Furthermore, this ECO system operates at ambient conditions and obviates the need for potent chemical oxidants, establishing a sustainable avenue for p-BQ production. Importantly, the system efficacy can be adaptable in actual phenol-containing coking wastewater, highlighting its potential practical application prospect. As a proof of concept, we construct an electrified Ru/C membrane for ECO of phenol, attaining phenol removal of 95.8% coupled with p-BQ selectivity of 73.1%, which demonstrates the feasibility of the ECO system in a scalable flow-through operation mode. This work provides a promising ECO strategy for realizing both phenols removal and valuable organics recovery from phenolic wastewater.


Asunto(s)
Benzoquinonas , Aguas Residuales , Contaminantes Químicos del Agua , Fenol/química , Fenoles , Carbono , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA