Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.504
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 586-593, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355797

RESUMEN

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Asunto(s)
Carcinoma Hepatocelular , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Hepáticas , Mutación , Secuenciación Completa del Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , China , Cromotripsis , Progresión de la Enfermedad , ADN Circular/genética , Pueblos del Este de Asia/genética , Evolución Molecular , Genoma Humano/genética , Virus de la Hepatitis B/genética , Mutación INDEL/genética , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Mutación/genética , Metástasis de la Neoplasia/genética , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
2.
Mol Cell ; 82(21): 4018-4032.e9, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332605

RESUMEN

Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.


Asunto(s)
ARN Largo no Codificante , Humanos , Aneuploidia , Proteína A Centromérica/metabolismo , ADN , Cinetocoros/metabolismo , ARN Largo no Codificante/genética , Centrómero
3.
Nature ; 610(7930): 54-60, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171286

RESUMEN

Integrated photonics has profoundly affected a wide range of technologies underpinning modern society1-4. The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency5,6. Over the last decade, the progression from pure III-V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry7,8. Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III-V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.

4.
Proc Natl Acad Sci U S A ; 121(15): e2318072121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573966

RESUMEN

As one of the most stunning biological nanostructures, the single-diamond (SD) surface discovered in beetles and weevils exoskeletons possesses the widest complete photonic bandgap known to date and is renowned as the "holy grail" of photonic materials. However, the synthesis of SD is difficult due to its thermodynamical instability compared to the energetically favoured bicontinuous double diamond and other easily formed lattices; thus, the artificial fabrication of SD has long been a formidable challenge. Herein, we report a bottom-up approach to fabricate SD titania networks via a one-pot cooperative assembly scenario employing the diblock copolymer poly(ethylene oxide)-block-polystyrene as a soft template and titanium diisopropoxide bis(acetylacetonate) as an inorganic precursor in a mixed solvent, in which the SD scaffold was obtained by kinetically controlled nucleation and growth in the skeletal channels of the diamond minimal surface formed by the polymer matrix. Electron crystallography investigations revealed the formation of tetrahedrally connected SD frameworks with the space group Fd [Formula: see text] m in a polycrystalline anatase form. A photonic bandgap calculation showed that the resulting SD structure has a wide and complete bandgap. This work solves the complex synthetic enigmas and offers a frontier in hyperbolic surfaces, biorelevant materials, next-generation optical devices, etc.

5.
Plant J ; 117(1): 33-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731059

RESUMEN

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Asunto(s)
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilación de ADN , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Regulación de la Expresión Génica de las Plantas
6.
Nat Mater ; 23(10): 1428-1435, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043929

RESUMEN

Robotic tasks that require robust propulsion abilities such as jumping, ejecting or catapulting require power-amplification strategies where kinetic energy is generated from pre-stored energy. Here we report an engineered accumulated strain energy-fracture power-amplification method that is inspired by the pressurized fluidic squirting mechanism of Ecballium elaterium (squirting cucumber plants). We realize a light-driven hydrogel launcher that harnesses fast liquid vapourization triggered by the photothermal response of an embedded graphene suspension. This vapourization leads to appreciable elastic energy storage within the surrounding hydrogel network, followed by rapid elastic energy release within 0.3 ms. These soft hydrogel robots achieve controlled launching at high velocity with a predictable trajectory. The accumulated strain energy-fracture method was used to create an artificial squirting cucumber that disperses artificial seeds over metres, which can further achieve smart seeding through an integrated radio-frequency identification chip. This power-amplification strategy provides a basis for propulsive motion to advance the capabilities of miniaturized soft robotic systems.

7.
Am J Pathol ; 194(7): 1248-1261, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38599461

RESUMEN

Mucosal-associated invariant T (MAIT) cells are essential in defending against infection. Sepsis is a systemic inflammatory response to infection and a leading cause of death. The relationship between the overall competency of the host immune response and disease severity is not fully elucidated. This study identified a higher proportion of circulating MAIT17 with expression of IL-17A and retinoic acid receptor-related orphan receptor γt in patients with sepsis. The proportion of MAIT17 was correlated with the severity of sepsis. Single-cell RNA-sequencing analysis revealed an enhanced expression of lactate dehydrogenase A (LDHA) in MAIT17 in patients with sepsis. Cell-culture experiments demonstrated that phosphoinositide 3-kinase-LDHA signaling was required for retinoic acid receptor-related orphan receptor γt expression in MAIT17. Finally, the elevated levels of plasma IL-18 promoted the differentiation of circulating MAIT17 cells in sepsis. In summary, this study reveals a new role of circulating MAIT17 in promoting sepsis severity and suggests the phosphoinositide 3-kinase-LDHA signaling as a driving force in MAIT17 responses.


Asunto(s)
Diferenciación Celular , Células T Invariantes Asociadas a Mucosa , Sepsis , Humanos , Sepsis/inmunología , Sepsis/patología , Sepsis/sangre , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Anciano , Interleucina-17/metabolismo , Interleucina-17/sangre , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo
8.
FASEB J ; 38(7): e23591, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572579

RESUMEN

CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Invasividad Neoplásica/genética , Neoplasias Pancreáticas/genética , ARN Circular/genética , ARN Circular/metabolismo
9.
Exp Cell Res ; 440(2): 114148, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936760

RESUMEN

UBA5, a ubiquitin-like activated enzyme involved in ufmylation and sumoylation, presents a viable target for pancreatic and breast cancer treatments, yet its role in lung adenocarcinoma (LUAD) remains underexplored. This study reveals UBA5's tumor-promoting effect in LUAD, as evidenced by its upregulation in patients and positive correlation with TNM stages. Elevated UBA5 levels predict poor outcomes for these patients. Pharmacological inhibition of UBA5 using DKM 2-93 significantly curtails the growth of A549, H1299, and cisplatin-resistant A549 (A549/DDP) LUAD cells in vitro. Additionally, UBA5 knockdown via shRNA lentivirus suppresses tumor growth both in vitro and in vivo. High UBA5 expression adversely alters the tumor immune microenvironment, affecting immunostimulators, MHC molecules, chemokines, receptors, and immune cell infiltration. Notably, UBA5 expression correlates positively with M2 macrophage infiltration, the predominant immune cells in LUAD. Co-culture experiments further demonstrate that UBA5 knockdown directly inhibits M2 macrophage polarization and lactate production in LUAD. Moreover, in vivo studies show reduced M2 macrophage infiltration following UBA5 knockdown. UBA5 expression is also associated with increased tumor heterogeneity, including tumor mutational burden, microsatellite instability, neoantigen presence, and homologous recombination deficiency. Experiments indicate that UBA5 overexpression promotes cisplatin resistance in vitro, whereas UBA5 inhibition enhances cisplatin sensitivity in both in vitro and in vivo settings. Overall, these findings suggest that targeting UBA5 inhibits LUAD by impeding cancer cell proliferation, M2 macrophage polarization, and cisplatin resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Cisplatino , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Femenino , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
10.
Nucleic Acids Res ; 51(13): 6684-6701, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37326025

RESUMEN

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.


Asunto(s)
Cilios , Proteína Proto-Oncogénica c-ets-1 , Proteínas de Pez Cebra , Animales , Cromatina/genética , Cromatina/metabolismo , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/patología , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Nano Lett ; 24(6): 2048-2056, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38166154

RESUMEN

Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.

12.
J Cell Mol Med ; 28(6): e18164, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445807

RESUMEN

Ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52) has a role in the occurrence and development of tumours. However, the mechanism by which UBA52 regulates hepatocellular carcinoma (HCC) tumorigenesis and progression remains poorly understood. By using the Cell Counting Kit (CCK-8), colony formation, wound healing and Transwell assays, we assessed the effects of UBA52 knockdown and overexpression on the proliferation and migration of HCC cells in vitro. By establishing subcutaneous and metastatic tumour models in nude mice, we evaluated the effects of UBA52 on HCC cell proliferation and migration in vivo. Through bioinformatic analysis of data from the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) databases, we discovered that UBA52 is associated with autophagy. In addition, we discovered that HCC tissues with high UBA52 expression had a poor prognosis in patients. Moreover, knockdown of UBA52 reduced HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, knockdown of UBA52 induced autophagy through EMC6 in HCC cells. These findings suggest that UBA52 promoted the proliferation and migration of HCC cells through autophagy regulation via EMC6 and imply that UBA52 may be a viable novel treatment target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Autofagia/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Transformación Celular Neoplásica , Neoplasias Hepáticas/genética , Proteínas de la Membrana , Ratones Desnudos
13.
J Am Chem Soc ; 146(34): 23978-23988, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39162335

RESUMEN

Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Humanos , Acetilación , Lisina/química , Lisina/metabolismo , Células K562 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Jurkat , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química
14.
Cancer Sci ; 115(9): 3143-3152, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38890815

RESUMEN

Common epidermal growth factor receptor (EGFR) mutations are usually not considered for immunotherapy in non-small cell lung cancer (NSCLC) due to poor efficacy. However, whether uncommon EGFR mutations are suitable for immunotherapy has not been thoroughly studied. Thus, we explored the tumor immune microenvironment (TME) features in uncommon EGFR mutant NSCLC. In this study, a total of 41 patients with EGFR mutations were included, the majority (85.4%) of whom were stage I. Among them, 22 patients harbored common mutations, while 19 patients presented with uncommon mutations. Compared with common mutations, uncommon mutations exhibited more infiltrating T cells and fewer M2 macrophages, upregulated expression of antigen processing and a presentation pathway. Unsupervised clustering based on the mIF profile identified two classes with heterogeneous TME in uncommon mutations. Class 1 featured the absence of PD-1+ cytotoxic T cell infiltration, and class 2 displayed a hotter TME because of the downregulated expression of hypoxia (p < 0.001), oxidative phosphorylation (p = 0.009), and transforming growth factor beta signaling (p = 0.01) pathways as well as increased expression of CTLA4 (p = 0.001) and PDCD1 (p = 0.004). The association of CTLA4 and PDCD1 with TME profiles was validated in a TCGA lung adenocarcinoma cohort with uncommon EGFR mutations. Our study reveals the distinct and heterogeneous TME features in uncommon EGFR mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Mutación , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Adulto , Anciano de 80 o más Años
15.
Small ; 20(21): e2309704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100215

RESUMEN

Single-atom nanozymes (SAzymes) are emerging natural enzyme mimics and have attracted much attention in the biomedical field. SAzymes with Metal─Nx sites designed on carbon matrixes are currently the mainstream in research. It is of great significance to further expand the types of SAzymes to enrich the nanozyme library. Single-atom alloys (SAAs) are a material in which single-atom metal sites are dispersed onto another active metal matrix, and currently, there is limited research on their enzyme-like catalytic performance. In this work, a biodegradable Pt1Pd SAA is fabricated via a simple galvanic replacement strategy, and for the first time reveals its intrinsic enzyme-like catalytic performance including catalase-, oxidase-, and peroxidase-like activities, as well as its photodynamic effect. Experimental characterizations demonstrate that the introduction of single-atom Pt sites contributes to enhancing the affinity of Pt1Pd single-atom alloy nanozyme (SAAzyme) toward substrates, thus exhibiting boosted catalytic efficiency. In vitro and in vivo experiments demonstrate that Pt1Pd SAAzyme exhibits a photo-controlled therapeutic effect, with a tumor inhibition rate of up to 100%. This work provides vital guidance for opening the research direction of SAAs in enzyme-like catalysis.


Asunto(s)
Aleaciones , Aleaciones/química , Animales , Platino (Metal)/química , Humanos , Catálisis , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Ratones , Fototerapia/métodos
16.
Plant Biotechnol J ; 22(6): 1681-1702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294334

RESUMEN

Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.


Asunto(s)
Empalme Alternativo , Arachis , Empalme Alternativo/genética , Arachis/genética , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Poliploidía , Metilación de ADN/genética , Poliadenilación/genética , Transcriptoma/genética
17.
J Urol ; 211(1): 134-143, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871326

RESUMEN

PURPOSE: We compared fluctuations in treatment response after onabotulinumtoxinA and sacral neuromodulation for urgency incontinence using Markov models. MATERIALS AND METHODS: We fit data from a randomized trial to Markov models to compare transitions of success/failure over 6 months between 200 U onabotulinumtoxinA and sacral neuromodulation. Objective failure was <50% reduction in urgency incontinence episodes from baseline; subjective failure "strongly disagree" to "neutral" to the Patient Global Symptom Control questionnaire. RESULTS: Of the 357 participants (median baseline daily urgency incontinence episodes 4.7 [IQR 3.7-6.0]) 61% vs 51% and 3.2% vs 6.1% reported persistent states of objective success and failure over 6 months after onabotulinumtoxinA vs sacral neuromodulation. Participants receiving onabotulinumtoxinA vs sacral neuromodulation had lower 30-day transition probabilities from objective and subjective success to failure (10% vs 14%, ratio 0.75 [95% CI 0.55-0.95]; 14% vs 21%, ratio 0.70 [95% CI 0.51-0.89]). The 30-day transition probability from objective and subjective failure to success did not differ between onabotulinumtoxinA and sacral neuromodulation (40% vs 36%, ratio 1.11 [95% CI 0.73-1.50]; 18% vs 17%, ratio 1.14 [95% CI 0.65-1.64]). CONCLUSIONS: Over 6 months after treatment, 2 in 5 women's symptoms fluctuate. Within these initial 6 months, women receiving onabotulinumtoxinA transitioned from success to failure over 30 days less often than sacral neuromodulation. For both treatments, there was an almost 20%-40% probability over 30 days that women returned to subjective and objective success after failure. Markov models add important information to longitudinal models on how symptoms fluctuate after urgency incontinence treatment.


Asunto(s)
Toxinas Botulínicas Tipo A , Estimulación Eléctrica Transcutánea del Nervio , Vejiga Urinaria Hiperactiva , Femenino , Humanos , Toxinas Botulínicas Tipo A/uso terapéutico , Probabilidad , Sacro , Resultado del Tratamiento , Vejiga Urinaria Hiperactiva/terapia , Incontinencia Urinaria de Urgencia/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Exp Dermatol ; 33(4): e15078, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38610097

RESUMEN

Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by ß-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.


Asunto(s)
Cicatriz , Cloruro de Litio , Animales , Ratones , Cloruro de Litio/farmacología , Diferenciación Celular , Cicatrización de Heridas , Piel
19.
Chemistry ; : e202402575, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39450572

RESUMEN

The selective cleavage of C-N bonds in N-containing compounds holds significant research value in organic synthesis, particularly for the synthesis of promising polynitrogen species. For instance, the discovery of the cyclo-pentazolate (cyclo-N5-) anion in 2017 as a result of cleavage of the C-N bond has sparked interest within the field of high energy density materials. However, previous methods using ferrous glycinate and m-chloroperoxybenzoic acid generated the cyclo-N5- anion in a low yield of 19.5% after 24 hours, and the mechanism remained unclear. In this study, we developed an efficient catalytic system comprising Mn (II) tetraphenylporphyrin and cumyl hydroperoxide. This system enables the cyclo-N5- anion to be produced from 3,5-dimethyl-4-hydroxyphenylpentazole in 35.4% yield in 4 hours. Characterization of Mn(IV)-oxo porphyrins, •CH3, and •C8H8ON5 radicals provides evidence for the mechanism whereby the cyclo-N5- anion forms. Our study underscores the competitive potential of radical-initiated selective C-N bonds cleavage in N-arylazoles and opens avenues for further exploration in this field.

20.
BMC Cancer ; 24(1): 1270, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394098

RESUMEN

BACKGROUND: Lung cancer (LC) occupies an important position in the lethality of cancer patients. Acquired resistance to gefitinib in lung adenocarcinoma (LUAD) seriously affects the therapeutic efficacy of LC. Thus, it is of major scientific and clinical significance to probe the mechanism of gefitinib resistance in LUAD for ameliorating the prognosis of patients. METHODS: The expression of miRNAs in gefitinib-resistant LUAD cells was validated using qRT-PCR. Cell viability was assessed through CCK-8, whereas cell death was examined through PI staining. Changes in the ferroptosis process were evaluated by detecting the intracellular Glutathione (GSH), Malondialdehyde (MDA), and Reactive Oxygen Species (ROS) levels. Downstream targets of miR-138-5p were verified via luciferase reporter and RNA pull-down assays. RIP and qRT-PCR were employed to evaluate pri-miR-138-5p binding to DiGeorge critical region 8 (DGCR8) and the pri-miR-138-5p m6A modification level. Additionally, the impact of fat mass and obesity-associated protein (FTO) on LUAD gefitinib sensitivity was assessed in vivo by constructing a xenograft model. RESULTS: We observed that miR-138-5p was notably diminished in gefitinib-resistant cells. Overexpression of miR-138-5p suppressed viability while facilitated cell death and intracellular ferroptosis in gefitinib-resistant cells. Moreover, lipocalin 2 (LCN2) was the downstream target of miR-138-5p. The biological functions of miR-138-5p on gefitinib-resistant cells was reversed by introduction of LCN2. FTO suppressed the binding of DGCR8 to pri-miR-138-5p through m6A modification, thereby restraining the processing of miR-138-5p. Meanwhile, silencing of FTO enhanced the sensitivity of LUAD to gefitinib treatment. CONCLUSION: FTO suppressed the processing of miR-138-5p and then modulated the proliferation, death, and ferroptosis of gefitinib-resistant cells through the miR-138-5p/LCN2 pathway, which may put forward novel insights for clinically ameliorating the therapeutic effect of gefitinib in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Resistencia a Antineoplásicos , Gefitinib , Lipocalina 2 , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Resistencia a Antineoplásicos/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Lipocalina 2/genética , Lipocalina 2/metabolismo , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA