Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1794-1812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135652

RESUMEN

The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.


Asunto(s)
Ascomicetos , Proteínas de Unión al ADN , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Especies Reactivas de Oxígeno , Antioxidantes , Virulencia , Proteínas de Choque Térmico/metabolismo , Homeostasis
2.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267547

RESUMEN

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sepsis , Animales , Sepsis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Ratas , Administración Intravenosa
3.
Anal Chem ; 95(14): 6107-6114, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995160

RESUMEN

Chiral nanoparticles are one of the research hotspots in the field of materials science, chemistry, and biology. Understanding and controlling the chirality of nanoparticles is one key step toward their use, but the origin of nanoparticles' chirality and its determinative factor are not well understood. In this work, we studied the chirality of gold nanoparticles (AuNPs) prepared through the conventional citrate reduction method. Unexpectedly, it was found that small AuNPs (∼13 nm) exhibited opposite chirality to the large AuNPs (>30 nm). The origin of the AuNPs chirality was revealed by comparing the crystal structure between small AuNPs and large AuNPs. It was proposed that the lattice orientation of fivefold-twinned AuNPs may be responsible for the intrinsic chirality of AuNPs. This work provides a deep mechanistic understanding of the intrinsic chirality of the AuNPs and will boost the development of the structure-controlled synthesis and application of chiral AuNPs and other chiral nanomaterials. Furthermore, based on the unexpected size effect, chiral AuNP probes were rationally constructed to improve the precision of chiral recognition.

4.
Acta Pharmacol Sin ; 44(2): 321-331, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35655094

RESUMEN

Metabolic cardiomyopathy (MC) is characterized by intracellular lipid accumulation and utilizing fatty acids as a foremost energy source, thereby leading to excess oxidative stress and mitochondrial dysfunction. There is no effective therapy available yet. In this study we investigated whether defective mitophagy contributed to MC and whether urolithin A (UA), a naturally occurring microflora-derived metabolite, could protect against MC in experimental obese mice. Mice were fed high fat diet for 20 weeks to establish a diet-induced obese model. We showed that mitochondrial autophagy or mitophagy was significantly downregulated in the heart of experimental obese mice. UA (50 mg·kg-1·d-1, for 4 weeks) markedly activated mitophagy and ameliorated MC in obese mice by gavage. In PA-challenged H9C2 cardiomyocytes, UA (5 µM) significantly increased autophagosomes and decreased autolysosomes. Furthermore, UA administration rescued PINK1/Parkin-dependent mitophagy and relieved mitochondrial defects in the heart of obese mice, which led to improving cardiac diastolic function and ameliorating cardiac remodelling. In PA-challenged primarily isolated cardiomyocytes, both application of mitophagy inhibitor Mdivi-1 (15 µM) and silencing of mitophagy gene Parkin blunted the myocardial protective effect of UA. In summary, our data suggest that restoration of mitophagy with UA ameliorates symptoms of MC, which highlights a therapeutic potential of UA in the treatment of MC.


Asunto(s)
Cardiomiopatías , Mitofagia , Ratones , Animales , Ratones Obesos , Proteínas Quinasas/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Pharmacology ; 108(1): 47-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36423586

RESUMEN

INTRODUCTION: Luteolin is a flavonoid polyphenolic compound exerting broad pharmacological and medicinal properties. Diabetes-related obesity increases the total blood volume and cardiac output and may increase the myocardial hypertrophy progression. However, the mechanism of luteolin in diabetic myocardial hypertrophy remains uncertain. Therefore, this study aimed to evaluate whether luteolin improved diabetic cardiomyopathy (DCM) by inhibiting the proteasome activity. METHODS: Cardiomyopathy was induced in streptozotocin-treated diabetes mellitus (DM) and db/db mice. Luteolin (20 mg kg-1·day-1) was administrated via gavage for 12 weeks. In vitro, high glucose and high insulin (HGI, glucose at 25.5 mM and insulin at 0.1 µM) inducing primary neonatal rat cardiomyocytes (NRCMs) were treated with or without luteolin for 48 h. Echocardiography, reverse transcription quantitative polymerase chain reaction, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS: Luteolin administration significantly prevented the onset of cardiac hypertrophy, fibrosis, and dysfunction in type 1 DM (T1DM) and type 2 DM (T2DM). Compared with DCM mice, luteolin groups showed lower serum triglyceride and total cholesterol levels. Furthermore, luteolin attenuated HGI-induced myocardial hypertrophy and reduced atrial natriuretic factor mRNA level in NRCMs. Proteasome activities were inhibited by luteolin in vitro. Luteolin also reduces the proteasome subunit levels (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome, as well as proteasome-regulated particles (Rpt) 1 and Rpt4 levels of 19S proteasome. Furthermore, luteolin treatment increased protein kinase B (AKT) and GSK-3α/ß (inactivation of GSK-3) phosphorylation. The phosphorylation level of AMPK activity was also reversed after the treatment with luteolin in comparison with the HGI-treated group. CONCLUSION: This study indicates that luteolin protected against DCM in mice, including T1DM and T2DM, by upregulating phosphorylated protein AMPK and AKT/GSK-3 pathways while decreasing the proteasome activity. These findings suggest that luteolin may be a potential therapeutic agent for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insulinas , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3/efectos adversos , Glucógeno Sintasa Quinasa 3/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Transducción de Señal , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Insulinas/efectos adversos
6.
Med Chem Res ; 32(6): 1039-1062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305209

RESUMEN

Small molecule drugs that covalently bind irreversibly to their target proteins have several advantages over conventional reversible inhibitors. They include increased duration of action, less-frequent drug dosing, reduced pharmacokinetic sensitivity, and the potential to target intractable shallow binding sites. Despite these advantages, the key challenges of irreversible covalent drugs are their potential for off-target toxicities and immunogenicity risks. Incorporating reversibility into covalent drugs would lead to less off-target toxicity by forming reversible adducts with off-target proteins and thus reducing the risk of idiosyncratic toxicities caused by the permanent modification of proteins, which leads to higher levels of potential haptens. Herein, we systematically review electrophilic warheads employed during the development of reversible covalent drugs. We hope the structural insights of electrophilic warheads would provide helpful information to medicinal chemists and aid in designing covalent drugs with better on-target selectivity and improved safety.

7.
Acta Pharmacol Sin ; 42(10): 1587-1597, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33495518

RESUMEN

Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 µM) and zonisamide (0.3 µM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Zonisamida/uso terapéutico , Animales , Aorta Abdominal/cirugía , Apoptosis/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Masculino , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
8.
Acta Pharmacol Sin ; 42(3): 393-403, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32647341

RESUMEN

Endoplasmic reticulum stress (ER stress) plays a key role in the development of cardiac hypertrophy and diabetic cardiomyopathy (DCM). Zonisamide (ZNS) was originally developed as an antiepileptic drug. Studies have shown that ZNS suppresses ER stress-induced neuronal cell damage in the experimental models of Parkinson's disease. Herein, we investigated whether ZNS improved DCM by attenuating ER stress-induced apoptosis. C57BL/6J mice were fed with high-fat diet (HFD) and intraperitoneally injected with low-dose streptozotocin (STZ) to induce type 2 diabetes mellitus (T2DM), and then treated with ZNS (40 mg·kg-1·d-1, i.g.) for 16 weeks. We showed that ZNS administration slightly ameliorated the blood glucose levels, but significantly alleviated diabetes-induced cardiac dysfunction and hypertrophy. Furthermore, ZNS administration significantly inhibited the Bax and caspase-3 activity, upregulated Bcl-2 activity, and decreased the proportion of TUNEL-positive cells in heart tissues. We analyzed the hallmarks of ER stress in heart tissues, and revealed that ZNS administration significantly decreased the protein levels of GRP78, XBP-1s, ATF6, PERK, ATF4, and CHOP, and elevated Hrd1 protein. In high glucose (HG)-treated primary cardiomyocytes, application of ZNS (3 µM) significantly alleviated HG-induced cardiomyocyte hypertrophy and apoptosis. ZNS application also suppressed activated ER stress in HG-treated cardiomyocytes. Moreover, preapplication of the specific ER stress inducer tunicamycin (10 ng/mL) eliminated the protective effects of ZNS against HG-induced cardiac hypertrophy and ER stress-mediated apoptosis. Our findings suggest that ZNS improves the cardiac diastolic function in diabetic mice and prevents T2DM-induced cardiac hypertrophy by attenuating ER stress-mediated apoptosis.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Zonisamida/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Cardiomegalia/sangre , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/etiología , Dieta Alta en Grasa , Chaperón BiP del Retículo Endoplásmico , Corazón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 115(6): 1388-1393, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363594

RESUMEN

RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Proteínas Virales/genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Begomovirus/química , Interacciones Huésped-Patógeno/genética , Células Vegetales , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/genética , Proteínas Virales/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-32085900

RESUMEN

Microtubules are made up of tubulin protein and play a very important part in numerous cellular events of eukaryotic cells, which is why they are seen as attractive targets for tumor chemotherapy. BNC105, a known vascular targeting agent, has entered in phase II clinical trials. It has previously been confirmed that BNC105 is an effective microtubule targeting agent for various cancers. BNC105 exhibits selectivity for tumor cells, elicits vascular disrupting effects, and inhibits tumor growth. However, the molecular mechanism of BNC105 is still elusive. Herein, the crystal structure of BNC105 in complex with tubulin protein is revealed, demonstrating the its interaction with the colchicine binding site. In order to thoroughly evaluate its molecular mechanism from a structural-activity-relationship standpoint, the binding mode of tubulin to BNC-105 is compared with colchicine, CA-4 and other BNC-105 derivatives. Our study not only confirms the detailed interactions of the BNC105-tubulin complex, but also offer substantial structural foundation for the design and development of novel benzo[b]furan derivatives as microtubule targeting agents.

11.
Biochem Biophys Res Commun ; 524(3): 629-635, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32029275

RESUMEN

AIMS: Endothelial progenitor cells (EPCs) are widely accepted to be applied in ischemic diseases. However, the therapeutic potency is largely impeded because of its inviability in these ischemic conditions. Autophagy is recognized to be vital in cell activity. Therefore, we explore the role and the mechanism of autophagy in ischemic EPCs. METHODS AND RESULTS: We applied 7d-cultured bone marrow EPCs to investigate the autophagy status under the oxygen and glucose deprivation (OGD) conditions in vitro, mimicking the in-vivo harsh ischemia and anoxia microenvironment. We found increased EPC apoptosis, accompanied by an impaired autophagy activation. Intriguingly, mTOR inhibitor Rapamycin was incapable to reverse this damped autophagy and EPC damage. We further found that autophagy pathway downstream Vps34-Beclin1-Atg14 complex assembly and activity were impaired in OGD conditions, and an autophagy-inducing peptide Tat-Beclin1 largely recovered the impaired complex activity and attenuated OGD-stimulated EPC injury through restoring autophagy activation. CONCLUSIONS: The present study discovered that autophagy activation is inhibited when EPCs located in the ischemia and anoxia conditions. Restoration of Vps34 complex activity obtains sufficient autophagy, thus promoting EPC survival, which will provide a potential target and advance our understanding of autophagy manipulation in stem cell transplantation.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Isquemia/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Glucosa/deficiencia , Masculino , Ratones Endogámicos C57BL , Oxígeno , Sirolimus/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Plant Biotechnol J ; 18(3): 732-742, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31471988

RESUMEN

Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.


Asunto(s)
Evolución Biológica , Cromosomas de las Plantas/genética , Genoma de Planta , Triticum/genética , Aegilops/genética , Hibridación Genómica Comparativa , Sitios de Carácter Cuantitativo , Sintenía
13.
J Autoimmun ; 106: 102349, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629629

RESUMEN

BACKGROUND: Genome-wide association studies have identified over 120 risk loci for psoriasis. However, most of the variations are located in non-coding region with high frequency and small effect size. Pathogenetic variants are rarely reported except HLA-C*0602 with the odds ratio being approximately 4.0 in Chinese population. Although rare variations still account for a small proportion of phenotypic variances in complex diseases, their effect on phenotypes is large. Recently, more and more studies focus on the low-frequency functional variants and have achieved a certain amount of success. METHOD: Whole genome sequencing and sanger sequencing was performed on 8 MZ twin pairs discordant for psoriasis to scan and verified the de novo mutations (DNMs). Additionally, 665 individuals with about 20 years' medical history versus 2054 healthy controls and two published large population studies which had about 8 years' medical history (including 10,727 cases versus 10,582 controls) were applied to validate the enrichment of rare damaging mutations in two DNMs genes. Besides, to verify the pathogenicity of candidate DNM in C3, RNA-sequencing for CD4+, CD8+ T cells of twins and lesion, non-lesion skin of psoriasis patients were carried out. Meanwhile, the enzyme-linked immunosorbent assay kit was used to detect the level of C3, C3b in the supernatant of peripheral blood. RESULT: A total of 27 DNMs between co-twins were identified. We found six of eight twins carry HLA-C∗0602 allele which have large effects on psoriasis. And it is interesting that a missense mutation in SPRED1 and a splice region mutation in C3 are found in the psoriasis individuals in the other two MZ twin pairs without carrying HLA-C*0602 allele. In the replication stage, we found 2 loss-of-function (LOF) variants of C3 only in 665 cases with about 20 years' medical history and gene-wise analysis in 665 cases and 2054 controls showed that the rare missense mutations in C3 were enriched in cases (OR = 1.91, P = 0.0028). We further scanned the LOF mutations of C3 in two published studies (about 8 years' medical history), and found one LOF mutation in the case without carrying HLA-C*0602. In the individual with DNM in C3, RNA sequencing showed the expression level of C3 in skin was significant higher than healthy samples in public database (TPM fold change = 1.40, P = 0.000181) and ELISA showed protein C3 in peripheral blood was higher (~2.2-fold difference) than the other samples of twins without DNM in C3. CONCLUSION: To the best of our knowledge, this is the first report that DNM in C3 is the likely pathological mutations, and it provided a better understanding of the genetic etiology of psoriasis and additional treatments for this disease.


Asunto(s)
Mutación/genética , Psoriasis/genética , Adolescente , Adulto , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Niño , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Psoriasis/patología , Secuenciación Completa del Genoma/métodos , Adulto Joven
14.
Eur Phys J E Soft Matter ; 43(4): 22, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32303859

RESUMEN

The hazards associated with travelling on highways in desert regions arise mainly from wind-borne sand disasters, such as complete or partial burial of the road surface by sand particles, and from erosion of the roadbed by the particles. To simulate the damage process caused by sand particles on roads in the desert, scaled-down tests were performed in a wind tunnel whereby sand particles of differing diameters and roadbed models of different gradients were tested and the impact trajectories of the sand particles were captured using a high-speed camera. The results showed that the impact trajectories may be classified into four types, and the proportion of each type is essentially stable with the statistical curves for the trajectories being similar to the Poisson distribution. The diameters of the sand particles and the slopes of the roadbed model influenced the impact trajectories, which also impacted the statistical values for each particle type. Owing to the Magnus force, the direction of rotation and the angular velocity of the sand particles controlled the nature of the collision trajectories; however, the direction of rotation did not remain in a fixed plane and the rotation speed only reached about 20% of the value of the first critical speed. The wind tunnel experiments enable a better understanding of the motion trajectories, rotation speed, force situation, and collision trajectories, providing a useful benchmark for research on wind-induced disasters on roads in desert regions.

15.
Phytother Res ; 34(2): 401-408, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31667930

RESUMEN

Mas-related G protein-coupled receptor-X2 (MRGPRX2) expressed on mast cells (MCs) has been shown to be a pivotal target for pseudo-allergic diseases. Therefore, MRGPRX2 might be a therapeutic target for allergic contact dermatitis, atopic dermatitis, and red man syndrome. Paeoniflorin (PF) was reported to have an antiinflammatory effect in neuroinflammation, enteritis, and so forth. In this study, we investigated the anti-pseudo-allergic effect of PF and the underlying molecular mechanisms. Our results showed that PF can suppress compound 48/80 (C48/80)-induced PCA and MCs degranulation in vivo, in a dose-dependent manner. Moreover, PF can reduce C48/80-induced calcium influx and suppress MC degranulation and chemokines release in vitro. PF can downregulate the phosphorylation levels of key kinases in PLCγ-regulated calcium influx and subsequent cytokine synthesis pathways. Our study revealed that PF could inhibit C48/80-induced allergic responses both in vivo and in vitro. As such, it may be regarded as a novel inhibitor for preventing MRGPRX2-mediated allergic diseases.


Asunto(s)
Antialérgicos/uso terapéutico , Señalización del Calcio/efectos de los fármacos , Glucósidos/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Mastocitos/efectos de los fármacos , Monoterpenos/uso terapéutico , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Animales , Degranulación de la Célula/efectos de los fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Acta Pharmacol Sin ; 40(8): 1019-1028, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30792486

RESUMEN

Minocycline is a tetracycline antibiotic and has been shown to play a protective role in cerebral and myocardial ischemia/reperfusion (I/R). However, the underlying mechanism remains unclear. Herein, we investigated whether monocyte chemotactic protein-induced protein-1 (MCPIP1), a negative regulator of inflammation, was involved in the minocycline-induced cardioprotection in myocardial I/R in vivo and in vitro models. Myocardial ischemia was induced in rats by left anterior descending coronary artery occlusion for 1 h and followed by 48 h reperfusion. Minocycline was administered prior to ischemia (45 mg/kg, ip, BID, for 1 d) and over the course of reperfusion (22.5 mg/kg, ip, BID, for 2 d). Cardiac function and infarct sizes were assessed. Administration of minocycline significantly decreased the infarct size, alleviated myocardial cell damage, elevated left ventricle ejection fraction, and left ventricle fractional shortening following I/R injury along with significantly decreased pro-inflammatory cytokine IL-1ß and monocyte chemoattractant protein-1 (MCP-1) levels in heart tissue. H9c2 cardiomyocytes were subjected to oxygen glucose deprivation (OGD) followed by reoxygenation (OGD/R). Pretreatment with minocycline (1-50 µmol/L) dose-dependently increased the cell viability and inhibited OGD/R-induced expression of MCP-1 and IL-6. Furthermore, minocycline dose-dependently inhibited nuclear translocation of NF-κB p65 in H9c2 cells subjected to OGD/R. In both the in vivo and in vitro models, minocycline significantly increased MCPIP1 protein expression; knockdown of MCPIP1 with siRNA in H9c2 cells abolished all the protective effects of minocycline against OGD/R-induced injury. Our results demonstrate that minocycline alleviates myocardial I/R injury via upregulating MCPIP1, then subsequently inhibiting NF-κB activation and pro-inflammatory cytokine secretion.


Asunto(s)
Cardiotónicos/farmacología , Minociclina/farmacología , Daño por Reperfusión Miocárdica/prevención & control , FN-kappa B/antagonistas & inhibidores , Ribonucleasas/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Masculino , Ratas Sprague-Dawley , Ribonucleasas/genética , Regulación hacia Arriba
17.
Gynecol Obstet Invest ; 84(5): 485-494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31039568

RESUMEN

AIM: The aim of this study was to investigate the expression of Forkhead box M1 (FoxM1) in endometriosis and determine FoxM1's possible effects on endometriotic epithelial cells (EECs) invasion and epithelial-mesenchymal transition (EMT). METHODS: The expression of FoxM1 and E-cadherin in endometrium and ectopic tissues was analyzed by immunohistochemistry. The transforming growth factor-ß1 (TGF-ß1) was added to induce EMT of EECs, which were purified from ectopic tissues. The Short hairpin RNA (ShRNA) intervention technique was used to silence FoxM1. The morphological changes of EECs were observed by microscope. The invasion ability of EECs was determined by transwell invasion assay. The expression of FoxM1 and EMT-related gene (E-cadherin, N-cadherin, vimentin, and Snail) in EECs was detected by quantitative reverse transcription-polymerase chain reaction and western blot. RESULTS: FoxM1 expression was significantly increased, while E-cadherin expression was significantly decreased in ectopic tissues than that in endometrium tissues. After TGF-ß1 treatment, EECs showed a transformation from an epithelial sheet-like structure to a mesenchymal fibroblastic spindle shape; EECs invasion ability was enhanced; the level changes of EMT-related molecule also indicated an EMT phenotype of EECs. After FoxM1-shRNA intervention, TGF-ß1-induced changes of EECs in morphology, invasion ability and EMT-related molecule expressions were partially reversed. CONCLUSIONS: Silencing of FoxM1 could reverse TGF-ß1-induced invasion and EMT of EECs.


Asunto(s)
Endometriosis/genética , Transición Epitelial-Mesenquimal/genética , Proteína Forkhead Box M1/genética , Silenciador del Gen/fisiología , Factor de Crecimiento Transformador beta1/genética , Antígenos CD/genética , Cadherinas/genética , Línea Celular Tumoral , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , ARN Interferente Pequeño/metabolismo
18.
Cardiovasc Drugs Ther ; 32(1): 5-21, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435775

RESUMEN

PURPOSE: Quercetin, a flavonoid, has been reported to ameliorate cardiovascular diseases, such as cardiac hypertrophy. However, the mechanism is not completely understood. In this study, a mechanism related to proteasome-glycogen synthesis kinase 3 (GSK-3) was elucidated in rats and primary neonatal cardiomyocytes. METHODS: Rats were subjected to sham or constriction of abdominal aorta surgery groups and treated with or without quercetin for 8 weeks. Angiotensin II (Ang II)-induced primary cardiomyocytes were cultured with quercetin treatment or not for 48 h. Echocardiography, real-time RT-PCR, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS: Echocardiography showed that quercetin prevented constriction of abdominal aorta-induced cardiac hypertrophy and improved the cardiac diastolic function. In addition, quercetin also significantly reduced the Ang II-induced hypertrophic surface area and atrial natriuretic factor (ANF) mRNA level in primary cardiomyocytes. Proteasome activities were obviously inhibited in the quercetin-treated group both in vivo and in vitro. Quercetin also decreased the levels of proteasome subunit beta type (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome as well as the levels of proteasome regulatory particle (Rpt) 1 and Rpt4 of the 19S proteasome. In particular, the PSMB5 level in the nucleus was reduced after quercetin treatment. Furthermore, phosphorylated GSK-3α/ß (inactivation of GSK-3) was decreased, which means that GSK-3 activity was increased. The phosphorylation levels of upstream AKT (PKB (protein kinase B)) and liver kinase B1/AMP activated protein kinase (LKB1/AMPKα) and those of downstream extracellular signal-regulated kinase (ERK), histone H3, ß-catenin, and GATA binding protein 4 (GATA4) were reduced after quercetin treatment, while hypertrophy was reversed after treatment with the GSK-3 inhibitor. CONCLUSION: In summary, quercetin prevents cardiac hypertrophy, which is related to proteasome inhibition and activation of GSK-3α/ß. Upstream (AKT, LKB1/AMPKα) and downstream hypertrophic factors, such as ERK, histone H3, ß-catenin, and GATA4, may also be involved.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Quercetina/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
19.
Biochem Biophys Res Commun ; 492(2): 262-268, 2017 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-28830813

RESUMEN

BACKGROUND: Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection.


Asunto(s)
Antioxidantes/uso terapéutico , Autofagia/efectos de los fármacos , Cardiotónicos/uso terapéutico , Flavonas/uso terapéutico , Corazón/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Animales , Línea Celular , Glucosa/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Ratas Sprague-Dawley
20.
Can J Physiol Pharmacol ; 95(9): 1030-1038, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28511026

RESUMEN

We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1ß in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.


Asunto(s)
Antiinflamatorios/farmacología , Fibroblastos/efectos de los fármacos , Glucocorticoides/farmacología , Histona Desacetilasa 2/metabolismo , Miocardio/patología , Animales , Antiinflamatorios/uso terapéutico , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/uso terapéutico , Hidrocortisona/farmacología , Hidrocortisona/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Xantina/metabolismo , Xantina Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA