Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7842): 474-479, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299186

RESUMEN

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Asunto(s)
Conducta Adictiva/tratamiento farmacológico , Diseño de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efectos adversos , Alcoholismo/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Arritmias Cardíacas/inducido químicamente , Técnicas de Química Sintética , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Alucinógenos/efectos adversos , Dependencia de Heroína/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Seguridad del Paciente , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Natación , Tabernaemontana/química
2.
Genomics ; 116(1): 110775, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163573

RESUMEN

AIM: To assess the differential expression profiles of exosome-derived microRNA (miRNA) and reveal their potential functions in patients with acute viral myocarditis (AVMC). MATERIALS & METHODS: Peripheral blood samples were collected from 9 patients diagnosed with AVMC and 9 healthy controls (HC) in the Affiliated Hospital of Qingdao University from July 2021 to September 2022. The exosomal miRNA expression were tested using RNA high-throughput sequencing. We conducted the GO and KEGG functional analysis to predict the potential molecular, biological functions and related signaling pathways of miRNAs in exosomes. Target genes of exosomal miRNAs were predicted and miRNA-target gene network was mapped using gene databases. Differentially expressed exosomal miRNAs were selected and their expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) to verify the sequencing results. RESULTS: P < 0.05 and Fold Change>2 were considered as cut-off value to screen miRNAs that were differently expressed. This study identified 14 upregulated and 14 downregulated exosome-derived miRNAs. GO and KEGG analysis showed that differentially expressed miRNAs may be related to ß-catenin binding, DNA transcription activities, ubiquitin ligase, PI3K-Akt, FoxO, P53, MAPK, and etc.. The target genes of differentially expressed miRNAs were predicted using gene databases. Real-time PCR confirmed the upregulation of hsa-miR-548a-3p and downregulation of hsa-miR-500b-5p in AVMC. CONCLUSIONS: Hsa-miR-548a-3p and hsa-miR-500b-5p could serve as a promising biomarker of AVMC. Exosomal miRNAs may have substantial roles in the mechanisms of AVMC.


Asunto(s)
MicroARNs , Miocarditis , Virosis , Humanos , MicroARNs/metabolismo , Miocarditis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Regulación hacia Abajo
3.
J Infect Dis ; 229(3): 660-670, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37976229

RESUMEN

COVID-19 is an acute respiratory disorder that is caused by SARS-CoV-2, in which excessive systemic inflammation is associated with adverse patient clinical outcomes. Here, we observed elevated expression levels of NLRP12 (nucleotide-binding leucine-rich repeat-containing receptor 12) in human peripheral monocytes and lung tissue during infection with SARS-CoV-2. Co-immunoprecipitation analysis revealed that NLRP12 directly interacted with the M protein through its leucine-rich repeat domain. Moreover, in vitro studies demonstrated that NLRP12 interacted with TRAF3 and promoted its ubiquitination and degradation, which counteracted the inhibitory effect of TRAF3 on the NF-κB/MAPK signaling pathway and promoted the production of inflammatory cytokines. Furthermore, an in vivo study revealed that NLRP12 knockout mice displayed attenuated tissue injury and ameliorated inflammatory responses in the lungs when infected with a SARS-CoV-2 M protein-reconstituted pseudovirus and mouse coronavirus. Taken together, these findings suggest that NLRP12 mediates the inflammatory responses during coronavirus infection.


Asunto(s)
COVID-19 , Factor 3 Asociado a Receptor de TNF , Humanos , Animales , Ratones , Factor 3 Asociado a Receptor de TNF/metabolismo , SARS-CoV-2/metabolismo , Leucina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo
4.
J Infect Dis ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412342

RESUMEN

BACKGROUND: Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS: We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS: A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS: HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.

5.
Lab Invest ; : 102104, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945481

RESUMEN

The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in FNA washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) were computed to evaluate HA`s clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC=0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in fine needle aspiration (FNA) washouts from PTC patients were significantly higher than in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than in non-metastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from non-metastatic LNs. HA in serum and FNA washout exhibited a potential significance for PTC diagnosis and indicator for LN metastasis in patients with PTC.

6.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38763124

RESUMEN

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Asunto(s)
Antibacterianos , Estructuras Metalorgánicas , Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/química , Fotoquimioterapia/métodos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Biopelículas/efectos de los fármacos , Terapia Fototérmica , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Zeolitas/química , Zeolitas/farmacología
7.
Small ; 20(5): e2305136, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759415

RESUMEN

This work addresses the challenges in developing carbon fiber paper-based supercapacitors (SCs) with high energy density by focusing on the limited capacity of carbon fiber. To overcome this limitation, a sponge-like porous carbon fiber paper enriched with oxygen functional groups (OFGs) is prepared, and Cu(OH)2 nanorods are grown on its surface to construct the SC anode. This design results in a multi-layered carbon fiber paper-based electrode with a specific structure and enhanced capacitance. The Cu(OH)2 @PCFP anode exhibits an areal capacitance of 547.83 mF cm-2 at a current density of 1 mA cm-2 and demonstrates excellent capacitance retention of 99.8% after 10 000 cycles. Theoretical calculations further confirm that the Cu(OH)2 /OFGs-graphite heterostructure exhibits higher conductivity, facilitating faster charge transfer. A solid-state SC is successfully assembled using Ketjen Black@PCFP as the cathode and KOH/PVA as the gel electrolyte. The resulting device exhibits an energy density of 0.21 Wh cm-2 at 1.50 mW cm-2 , surpassing the performance of reported Cu(OH)2 SCs. This approach, combining materials design with an understanding of underlying mechanisms, not only expands the range of electrode materials but also provides valuable insights for the development of high-capacity energy storage devices.

8.
J Transl Med ; 22(1): 433, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720361

RESUMEN

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Doxorrubicina/efectos adversos , Cardiotoxicidad/etiología , Animales , Disbiosis , Trasplante de Microbiota Fecal
9.
Respir Res ; 25(1): 223, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811936

RESUMEN

BACKGROUND: Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS: We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS: The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION: Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.


Asunto(s)
Infecciones Comunitarias Adquiridas , Microbiota , Índice de Severidad de la Enfermedad , Esputo , Humanos , Infecciones Comunitarias Adquiridas/microbiología , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/epidemiología , Masculino , Femenino , Esputo/microbiología , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Estudios Longitudinales , Estudios de Cohortes , Disbiosis/microbiología , Disbiosis/diagnóstico , Neumonía/microbiología , Neumonía/diagnóstico , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/diagnóstico , Neumonía Bacteriana/epidemiología , Anciano de 80 o más Años , Adulto
10.
Cell Commun Signal ; 22(1): 267, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745232

RESUMEN

Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.


Asunto(s)
Epidídimo , Análisis de la Célula Individual , Maduración del Esperma , Transcriptoma , beta-Defensinas , Masculino , Animales , beta-Defensinas/genética , beta-Defensinas/metabolismo , Ratones , Transcriptoma/genética , Maduración del Esperma/genética , Epidídimo/metabolismo , Espermatozoides/metabolismo , Familia de Multigenes , Ratones Endogámicos C57BL , Testículo/metabolismo
11.
Langmuir ; 40(8): 4306-4313, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38365200

RESUMEN

At present, Ni-based coatings are rarely used in the field of voltage control friction because of their poor antifriction, wear resistance, and conductive properties. Therefore, in this paper, Cu-BTC@Ag nanocrystals were used to enhance the nickel coatings, and the effect of voltage on their tribological properties was also investigated. It was found that the grains of coating were refined via the addition of Cu-BTC@Ag nanocrystals, leading to an improvement in the hardness and corrosion resistance of this composite coating. The tribological performance of nickel composite coating could be controlled under different electrical fields. With the comparison of the pure Ni-based coating, the average friction coefficient and wear volume of its composite coating with 5 wt % Cu-BTC@Ag were reduced by 7.0 and 91.8%, respectively, which showed excellent wear resistance without an applied voltage. Under the condition of 20 V, the 5 wt % Cu-BTC@Ag/Ni-based composite coating owned outstanding antifriction performance. Therefore, Cu-BTC@Ag played an intelligent role in regulating the friction of Ni-based coatings under an external voltage. It is due to the accumulation of Cu-BTC@Ag nanocrystals on the surface of the coating under the action of voltage, which played the role of supporting load and effectively reducing wear.

12.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38100838

RESUMEN

The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.

13.
J Immunol ; 208(11): 2515-2522, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35534212

RESUMEN

The cannabinoid receptor 2 (CB2) is a receptor mainly expressed in immune cells and believed to be immunosuppressive in infective or inflammatory models. However, its role in sepsis has not been fully elucidated. In this study, we delineate the function and mechanism of CB2 in the cecal ligation and puncture-induced septic model in mice. The activation of CB2 signaling with HU308 led to decreased survival rates and more severe lung injury in septic mice, and lower IL-10 levels in peritoneal lavage fluid were observed in the CB2 agonist group. The mice with conditional knockout of CB2-encoding gene CNR2 in CD4+ T cells (CD4 Cre CNR2fl/fl) improved survival, enhanced IL-10 production, and ameliorated pulmonary damage in the sepsis model after CB2 activation. In addition, double-knockout of the CNR2 gene (Lyz2 Cre CD4 Cre CNR2fl/fl) decreased the susceptibility to sepsis compared with Lyz2 Cre CNR2fl/fl mice. Mechanistically, the blockade of IL-10 with the anti-IL-10 Ab abolished its protection in CD4 Cre CNR2fl/fl mice. In accordance with the animal study, in vitro results revealed that the lack of CNR2 in CD4+ cells elevated IL-10 production, and CB2 activation inhibited CD4+ T cell-derived IL-10 production. Furthermore, in the clinical environment, septic patients expressed enhanced CB2 mRNA levels compared with healthy donors in PBMCs, and their CB2 expression was inversely correlated with IL-10. These results suggested that the activation of CD4+ T cell-derived CB2 increased susceptibility to sepsis through inhibiting IL-10 production.


Asunto(s)
Linfocitos T CD4-Positivos , Interleucina-10 , Receptor Cannabinoide CB2 , Sepsis , Animales , Ligadura , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB2/genética , Sepsis/patología
14.
Environ Res ; 246: 118157, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199468

RESUMEN

Halomonas spp. are moderately halophilic bacteria with the ability to tolerate various heavy metals. However, the role of basic cellular metabolism, particularly amino acid metabolism, has not been investigated in Halomonas spp. under excess Mn(Ⅱ). The strain Halomonas sp. MNB13 was isolated from a deep-sea ferromanganese nodule and can tolerate 80 mM Mn(Ⅱ). To comprehensively explore the mechanisms underlying its resistance to excess Mn(Ⅱ), we conducted a comparative proteome analysis. The data revealed that both 10 mM and 50 mM Mn(Ⅱ) significantly up-regulated the expression of proteins involved in Mn(Ⅱ) transport (MntE), oxidative stress response (alkyl hydroperoxide reductase and the Suf system), and amino acid metabolism (arginine, cysteine, methionine, and phenylalanine). We further investigated the role of cysteine metabolism in Mn(Ⅱ) resistance by examining the function of its downstream product, H2S. Consistent with the up-regulation of cysteine desulfurase, we detected an elevated level of H2S in Halomonas sp. MNB13 cells under Mn(Ⅱ) stress, along with increased intracellular levels of H2O2 and O2•-. Upon exogenous addition of H2S, we observed a significant restoration of the growth of Halomonas sp. MNB13. Moreover, we identified decreased intracellular levels of H2O2 and O2•- in MNB13 cells, which coincided with a decreased formation of Mn-oxides during cultivation. In contrast, in cultures containing NaHS, the residual Mn(Ⅱ) levels were higher than in cultures without NaHS. Therefore, H2S improves Mn(Ⅱ) tolerance by eliminating intracellular reactive oxygen species rather than decreasing Mn(Ⅱ) concentration in solution. Our findings indicate that cysteine metabolism, particularly the intermediate H2S, plays a pivotal role in Mn(Ⅱ) resistance by mitigating the damage caused by reactive oxygen species. These findings provide new insights into the amino acid mechanisms associated with Mn(Ⅱ) resistance in bacteria.


Asunto(s)
Halomonas , Proteómica , Halomonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno
15.
BMC Womens Health ; 24(1): 248, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637788

RESUMEN

BACKGROUND: Idiopathic granulomatous mastitis (IGM) results in notable clinical symptoms and breast deformity. This study aimed to evaluate the clinical feasibility of microwave ablation (MWA) for the treatment of IGM through comparison with surgical excision. METHODS: From June 2016 to December 2020, a total of 234 consecutive patients admitted to the hospital were retrospectively included in this study. IGM was pathologically confirmed via breast biopsy in all included patients. These patients were divided into the MWA group (n = 91) and surgical group (n = 143) based on the type of treatment. Patients in both groups received oral prednisone prior to intervention. The clinical remission rate, recurrence rate, operative pain, complications, and BREAST Q score were compared between the two groups. RESULTS: There were 340 lesions in the MWA group, and 201 lesions in the surgical group were ultimately included. Significant differences in the complete remission rate (96.7% vs. 86.7%, p = 0.020), recurrence rate (3.3% vs. 13.3%, p = 0.020), operation time (48.7±14.6 min vs. 68.1±36.4 min, p < 0.001), postoperative pain (p < 0.001) and postoperative BREAST Q score (p < 0.001) were observed between the MWA and surgical groups. CONCLUSIONS: Microwave ablation is feasible for the treatment of IGM, due to its high curative rate and low recurrence rate. Because of the minimal invasiveness of MWA and sufficient preservation of the gland and contour of the breast, patients are more satisfied with the appearance of the breast. Therefore, for patients with complex conditions requiring surgery, MWA is a good alternative treatment.


Asunto(s)
Mastitis Granulomatosa , Femenino , Humanos , Estudios Retrospectivos , Resultado del Tratamiento , Mastitis Granulomatosa/cirugía , Microondas/uso terapéutico , Ultrasonografía Intervencional , Inmunoglobulina M/uso terapéutico
16.
Dis Esophagus ; 37(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189470

RESUMEN

Herein, we aimed to evaluate the efficacy and safety of camrelizumab combined with docetaxel and carboplatin as a neoadjuvant treatment for locally advanced oesophageal squamous cell carcinoma (OSCC). Fifty-one patients with OSCC, treated from July 2020 to October 2022, were analyzed. Of them, 41 patients underwent surgery 4-8 weeks after undergoing two cycles of camrelizumab (200 mg IV Q3W) combined with docetaxel (75 mg/m2 IV Q3W) and carboplatin (area under the curve = 5-6 IV Q3W). The primary endpoint was the pathological complete response rate. All 51 patients (100%) experienced treatment-related grades 1-2 adverse events, and 2 patients (3.9%) experienced grade 4 events (including elevated alanine transaminase/aspartate transferase levels and Guillain-Barre syndrome). Fifty patients were evaluated for the treatment efficacy. Of them, 13 achieved complete response, and the objective response rate was 74%. Only 41 patients underwent surgical treatment. The pathological complete response rate was 17.1%, the major pathological response rate was 63.4%, and the R0 resection rate was 100%. Approximately 22% of the patients had tumor regression grades 0. Eight patients (19.5%) developed surgery-related complications. The median follow-up time was 18 months (range: 3-29 months). Four patients experienced disease progression, while four died. The median disease-free survival and overall survival were not reached. Camrelizumab combined with docetaxel and carboplatin is an effective and safe neoadjuvant treatment for locally advanced OSCC. This regimen may afford a potential strategy to treat patients with locally advanced OSCC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Docetaxel/uso terapéutico , Carboplatino , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Terapia Neoadyuvante , Estadificación de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Esofágicas/patología
17.
Biomed Chromatogr ; 38(2): e5787, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38038157

RESUMEN

Previous studies have found that removing the sporoderm significantly enhanced antitumor and immunoregulatory activities of Ganoderma lucidum spore (GLS) compared with breaking the sporoderm. However, the pharmacokinetics of sporoderm-removed GLS (RGLS) and sporoderm-broken GLS (BGLS) remain elusive. To compare the pharmacokinetic differences between the two products, we developed a UPLC-QqQ MS method for determining nine representative triterpenoid concentrations. Chloramphenicol was used as an internal standard. The samples were separated on a reversed-phase column using acetonitrile-0.1% formic acid and water-0.1% formic acid as mobile phases. Nine triterpenoids were analyzed using multiple reaction monitoring mode. The results showed that the area under the concentration-time curve from dosing to time t of all nine components was increased in RGLS compared with BGLS. And the time to the maximum concentration in BGLS was delayed compared with that of RGLS. These indicated that the absorption of RGLS was better than that of BGLS, and the sporoderm might hinder the absorption of the active components. These results increase our understanding of the bioavailability of BGLS and RGLS and indicate that increased bioavailability is one of the main reasons for the enhanced efficacy of RGLS.


Asunto(s)
Reishi , Triterpenos , Ratas , Animales , Cromatografía Líquida de Alta Presión , Esporas Fúngicas/química , Formiatos , Triterpenos/análisis
18.
Biochem Genet ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358587

RESUMEN

Circular RNA ITCH (circ-ITCH) is implicated in papillary thyroid carcinoma (PTC) development. Nevertheless, the more detailed molecular mechanism remains uncovered. The transcriptional level of circ-ITCH was tested via quantitative real-time PCR. Transwell assay was introduced to assess the migrative and invasive abilities of cells. RNA interference technology was employed to reduce the level of circ-ITCH as well as JAZF1 in PTC cells. Western blot assay was utilized to reveal the content of JAZF1 and proteins related to epithelial-mesenchymal transformation (EMT) progression. Circ-ITCH was downregulated in PTC tissues as well as cells. Overexpression of circ-ITCH suppressed EMT, migration, invasion, facilitated apoptosis in PTC cells, while silencing circ-ITCH exhibited reversed effects. Additionally, miR-106a-5p was the target of circ-ITCH and negatively regulated through circ-ITCH. MiR-106a-5p mimic partly eliminated the influences of overexpressed circ-ITCH in PTC cells. Moreover, JAZF1 could interact with miR-106a-5p, then it was regulated via circ-ITCH. Silencing JAZF1 partially counteracted the role of circ-ITCH in PTC cells progress. This study uncovered that circ-ITCH suppressed the development of PTC cells at least partly by mediating miR-106a-5p/JAZF1 network.

19.
Biomed Chromatogr ; 38(4): e5829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351664

RESUMEN

The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Femenino , Humanos , Hidrocortisona , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Esteroides
20.
J Biol Chem ; 298(11): 102588, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243113

RESUMEN

Cell adhesion molecule CD44v8-10 is associated with tumor ste0mness and malignancy; however, whether CD44v10 alone confers these properties is unknown. Here, we demonstrated that CD44v10 promotes stemness and chemoresistance of triple-negative breast cancers (TNBCs) individually. Next, we identified that genes differentially expressed in response to ectopic expression of CD44v10 are mostly related to glycolysis. Further, we showed that CD44v10 upregulates glucose transporter 1 to facilitate glycolysis by activating the MAPK/ERK and PI3K/AKT signaling pathways. This glycolytic reprogramming induced by CD44v10 contributes to the stem-like properties of TNBC cells and confers resistance to paclitaxel treatment. Notably, we determined that the knockdown of glucose transporter 1 could attenuate the enhanced effects of CD44v10 on glycolysis, stemness, and paclitaxel resistance. Collectively, our findings provide novel insights into the function of CD44v10 in TNBCs and suggest that targeting CD44v10 may contribute to future clinical therapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA