Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37622462

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and poorly treated subtype of breast cancer. Identifying novel drivers and mechanisms for tumor progression is essential for precise targeted therapy of TNBC. Immunoglobulin-like transcript 4 (ILT4; also known as LILRB2) is a classic myeloid suppressor for their activation and immune response. Our recent results found that ILT4 is also highly expressed in lung cancer cells, where it has a role in promoting immune evasion and thus tumor formation. However, the expression and function of ILT4 in breast cancer remains elusive. Here, using our patient cohort and public database analysis, we found that TNBC displayed the most abundant ILT4 expression among all breast cancer subtypes. Functionally, enriched ILT4 promoted TNBC cell proliferation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Further mechanistic analysis revealed that ILT4 reprogrammed aerobic glycolysis of tumor cells via AKT-mTOR signaling-mediated glucose transporter 3 (GLUT3; also known as SLC2A3) and pyruvate kinase muscle 2 (PKM2, an isoform encoded by PKM) overexpression. ILT4 inhibition in TNBC reduced tumor progression and GLUT3 and PKM2 expression in vivo. Our study identified a novel driver for TNBC progression and proposed a promising strategy to combat TNBC by targeting ILT4.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Transportador de Glucosa de Tipo 3 , Proliferación Celular/genética , Glucosa
2.
Plant Physiol ; 195(2): 1365-1381, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38471799

RESUMEN

Several starch synthesis regulators have been identified, but these regulators are situated in the terminus of the regulatory network. Their upstream regulators and the complex regulatory network formed between these regulators remain largely unknown. A previous study demonstrated that NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20 and OsNAC26 (OsNAC20/26), redundantly and positively regulate the accumulation of storage material in rice (Oryza sativa) endosperm. In this study, we detected OsNAC25 as an upstream regulator and interacting protein of OsNAC20/26. Both OsNAC25 mutation and OE resulted in a chalky seed phenotype, decreased starch content, and reduced expression of starch synthesis-related genes, but the mechanisms were different. In the osnac25 mutant, decreased expression of OsNAC20/26 resulted in reduced starch synthesis; however, in OsNAC25-overexpressing plants, the OsNAC25-OsNAC20/26 complex inhibited OsNAC20/26 binding to the promoter of starch synthesis-related genes. In addition, OsNAC20/26 positively regulated OsNAC25. Therefore, the mutual regulation between OsNAC25 and OsNAC20/26 forms a positive regulatory loop to stimulate the expression of starch synthesis-related genes and meet the great demand for starch accumulation in the grain filling stage. Simultaneously, a negative regulatory loop forms among the 3 proteins to avoid the excessive expression of starch synthesis-related genes. Collectively, our findings demonstrate that both promotion and inhibition mechanisms between OsNAC25 and OsNAC20/26 are essential for maintaining stable expression of starch synthesis-related genes and normal starch accumulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Almidón , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endospermo/metabolismo , Endospermo/genética
3.
Plant Physiol ; 196(2): 979-995, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917222

RESUMEN

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.


Asunto(s)
Cadmio , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Cadmio/metabolismo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/genética , Semillas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 196(2): 870-882, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39158082

RESUMEN

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to 8 alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pseudoroegneria libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pseudoroegneria strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.


Asunto(s)
Pintura Cromosómica , Cromosomas de las Plantas , Genoma de Planta , Poaceae , Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Poaceae/genética , Triticum/genética , Filogenia , Hibridación Fluorescente in Situ
5.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448864

RESUMEN

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Asunto(s)
Resistencia a la Sequía , Elymus , Mapeo Cromosómico , Cromosomas , Ácidos Grasos
6.
BMC Plant Biol ; 24(1): 930, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370516

RESUMEN

BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.


Asunto(s)
Cadmio , Compuestos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cadmio/metabolismo , Compuestos Férricos/metabolismo , Cloruros/metabolismo , Fertilizantes , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
7.
BMC Plant Biol ; 24(1): 1006, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39455993

RESUMEN

BACKGROUND: Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS: Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS: In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.


Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Tetraploidía , Triticum , Triticum/genética , Triticum/microbiología , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Poaceae/genética , Poaceae/microbiología , Mapeo Cromosómico
8.
Small ; : e2405838, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210638

RESUMEN

The heterostructure strategy is currently an effective method for enhancing the catalytic activity of materials. However, the challenge that is how to further improve their catalytic performance, based on the principles of material modification is must addressed. Herein, a strategy is introduced for magnetically regulating the catalytic activity to further enhance the hydrogen evolution reaction (HER) activity for Co0.85Se@CNTs heterostructured catalyst. Building on heterostructure modulation, an external alternating magnetic field (AMF) is introduced to enhance the electronic localization at the active sites, which significantly boosts catalytic performance (71 to 43 mV at 10 mA cm-2). To elucidate the catalytic mechanism, especially under the influence of the AMF, in situ Raman spectroscopy is innovatively applied to monitor the HER process of Co0.85Se@CNTs, comparing conditions with and without the AMF. This study demonstrates that introducing the AMF does not induce a change in the true active site. Importantly, it shows that the Lorentz force generated by the AMF enhances HER activity by promoting water molecule adsorption and O─H bond cleavage, with the Stark tuning rate indicating increased water interaction and bond cleavage efficiency. Theoretical calculations further support that the AMF optimizes energy barriers for key reaction intermediates (steps of *H2O-TS and *H+*1/2H2).

9.
Theor Appl Genet ; 137(10): 246, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365463

RESUMEN

KEY MESSAGE: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.


Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Genes de Plantas , Fitomejoramiento , Enfermedades de las Plantas , Poaceae , Translocación Genética , Triticum , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Poaceae/genética , Poaceae/microbiología , Cromosomas de las Plantas/genética , Tetraploidía , Marcadores Genéticos , Puccinia/patogenicidad , Mapeo Cromosómico , Hibridación Fluorescente in Situ , Basidiomycota/patogenicidad
10.
Theor Appl Genet ; 137(1): 17, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198011

RESUMEN

KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Tetraploidía , Poaceae/genética
11.
Environ Sci Technol ; 58(12): 5483-5490, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38484382

RESUMEN

Polychlorinated dibenzo-p-dioxins (PCDDs), comprising 75 congeners, have gained considerable attention from the general public and the scientific community owing to their high toxic potential. The base-catalyzed hydrolysis of PCDDs is crucial for the assessment of their environmental persistence. Nonetheless, owing to the substantial number of congeners and low hydrolysis rates of PCDDs, conducting hydrolysis experiments proves to be exceedingly time-consuming and financially burdensome. Herein, density functional theory and transition state theory were employed to predict the base-catalyzed hydrolysis of PCDDs in aquatic environments. Findings reveal that PCDDs undergo base-catalyzed hydrolysis in aquatic environments with two competing pathways: prevailing dioxin ring-opening and reduced reactivity in the hydrolytic dechlorination pathway. The resultant minor products include hydroxylated PCDDs, which exhibit thermodynamic stability surpassing that of the principal product, chlorinated hydroxydiphenyl ethers. The half-lives (ranging from 17.10 to 1.33 × 1010 h at pH = 8) associated with the base-catalyzed hydrolysis of PCDDs dissolved in water were shorter compared to those within the water-sediment environmental system. This observation implies that hydroxide ions can protect aquatic environments from PCDD contamination. Notably, this study represents the first attempt to predict the base-catalyzed hydrolysis of PCDDs by using quantum chemical methods.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Dibenzodioxinas Policloradas/toxicidad , Teoría Funcional de la Densidad , Hidrólisis , Agua , Catálisis , Dibenzofuranos Policlorados
12.
Mol Breed ; 44(8): 55, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157810

RESUMEN

Preventing the widespread occurrence of stripe rust in wheat largely depends on the identification of new stripe rust resistance genes and the breeding of cultivars with durable resistance. In previous study, we reported 6E of wheat-tetraploid Thinopyrum elongatum 6E (6D) substitution line contains adult-stage stripe rust resistance genes. In this study, three novel wheat-tetraploid Th. elongatum translocation lines were generated from the offspring of a cross between common wheat and the 6E (6D) substitution line. Genomic in situ hybridization (GISH), fluorescence in situ hybridization chromosome painting (FISH painting), repetitive sequential FISH, and 55 K SNP analyses indicated that K227-48, K242-82, and K246-6 contained 42 chromosomes and were 6DL·6ES, 2DL·6EL, and 6DS·6EL translocation lines, respectively. The assessment of stripe rust resistance revealed that K227-48 was susceptible to a mixture of Pst races, whereas the 6EL lines K242-82 and K246-6 were highly resistance to stripe rust at the adult stage. Thus, this resistance was due to the chromosome arm 6EL of tetraploid Th. elongatum. The improved agronomic performance of 6DS·6EL translocation line may be a useful novel germplasm resource for wheat breeding programs. For the application of marker-assisted selection (MAS), 47 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome 6E using the whole-genome sequence of diploid Th. elongatum. The 6DS·6EL translocation line and SSR markers have the potential to be deploy for future stripe rust resistance wheat breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01493-6.

13.
Biochem Genet ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850375

RESUMEN

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

14.
Physiol Mol Biol Plants ; 30(3): 467-481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633269

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.

15.
J Environ Sci (China) ; 146: 226-236, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969450

RESUMEN

Defluoridation of coal mining water is of great significance for sustainable development of coal industry in western China. A novel one-step mechanochemical method was developed to prepare polymeric aluminum modified powder activated carbon (PAC) for effective fluoride removal from coal mining water. Aluminum was stably loaded on the PAC through facile solid-phase reaction between polymeric aluminum (polyaluminum chloride (PACl) or polyaluminum ferric chloride (PAFC)) and PAC (1:15 W/W). Fluoride adsorption on PACl and PAFC modified PAC (C-PACl and C-PAFC) all reached equilibrium within 5 min, at rate of 2.56 g mg-1 sec-1 and 1.31 g mg-1 sec-1 respectively. Larger increase of binding energy of Al on C-PACl (AlF bond: 76.64 eV and AlFOH bond: 77.70 eV) relative to that of Al on C-PAFC (AlF bond: 76.52 eV) explained higher fluoride uptake capacity of C-PACl. Less chloride was released from C-PACl than that from C-PAFC due to its higher proportion of covalent chlorine and lower proportion of ionic chlorine. The elements mapping and atomic composition proved the stability of Al loaded on the PAC as well as the enrichment of fluoride on both C-PACl and C-PAFC. The Bader charge, formation energy and bond length obtained from DFT computational results explained the fluoride adsorption mechanism further. The carbon emission was 7.73 kg CO2-eq/kg adsorbent prepared through mechanochemical process, which was as low as 1:82.3 to 1:8.07 × 104 compared with the ones prepared by conventional hydrothermal methods.


Asunto(s)
Carbón Orgánico , Minas de Carbón , Fluoruros , Contaminantes Químicos del Agua , Fluoruros/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Adsorción , Aluminio/química , Polímeros/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
16.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540294

RESUMEN

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Asunto(s)
Pintura Cromosómica , Oligonucleótidos , Oligonucleótidos/genética , Poaceae/genética , Triticum/genética , Cromosomas
17.
Theor Appl Genet ; 136(6): 146, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258797

RESUMEN

KEY MESSAGE: QTgw.saas-5B was validated as a major thousand-grain weight-related QTL in a founder parent used for wheat breeding and then precisely mapped to a 0.6 cM interval. Increasing the thousand-grain weight (TGW) is considered to be one of the most important ways to improve yield, which is a core objective among wheat breeders. Chuanmai42, which is a wheat cultivar with high TGW and a high and stable yield, is a parent of more than 30 new varieties grown in southwestern China. In this study, a Chuanmai42-derived recombinant inbred line (RIL) population was used to dissect the genetic basis of TGW. A major QTL (QTgw.saas-5B) mapped to the Xgwm213-Xgwm540 interval on chromosome 5B of Chuanmai42 explained up to 20% of the phenotypic variation. Using 71 recombinants with a recombination in the QTgw.saas-5B interval identified from a secondary RIL population comprising 1818 lines constructed by crossing the QTgw.saas-5B near-isogenic line with the recurrent parent Chuannong16, QTgw.saas-5B was delimited to a 0.6 cM interval, corresponding to a 21.83 Mb physical interval in the Chinese Spring genome. These findings provide the foundation for QTgw.saas-5B cloning and its use in molecular marker-assisted breeding.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Triticum/genética , Fenotipo , Fitomejoramiento , Grano Comestible/genética , China , Cromosomas de las Plantas/genética
18.
BMC Geriatr ; 23(1): 294, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189072

RESUMEN

BACKGROUND: Neuron Specific Enolase (NSE), a neuro-biochemical protein marker, may correlate with the prognosis of stroke patients. Moreover, hypertension is the most common comorbidities in patients with acute ischemic stroke (AIS), and the relationship between NSE levels and long-term functional outcomes in such an increasingly large population is unclear. The aim of the study was to investigate the relationships mentioned above and optimize the prediction models. METHODS: From 2018 to 2020, 1086 admissions for AIS were grouped as hypertension and non-hypertension, while hypertension group was randomly divided into development and validation cohorts for internal validation. The severity of the stroke was staged by National Institutes of Health Stroke Scale (NIHSS) score. Stroke prognosis after 1 year of follow up was documented by modified Rankin Scale (mRS) score. RESULTS: Analysis revealed the following findings:(i) Serum NSE levels increased greatly in hypertension subjects with poor functional outcomes(p = 0.046). However, there was no association in non-hypertension individuals(p = 0.386). (ii) In addition to the conventional factors (age and NIHSS score), NSE (OR:1.241, 95% CI: 1.025-1.502) and prothrombin time were significantly related to the incidence of unfavorable outcomes. (iii)Based on the above four indicators, a novel nomogram was established to predict the prognosis of stoke in hypertension patients with the c-index values of 0.8851. CONCLUSIONS: Overall, high baseline NSE is associated with poor 1-year AIS outcomes in hypertension patients, suggesting NSE may be a potential prognostic and therapeutic target for stroke in hypertension patients.


Asunto(s)
Isquemia Encefálica , Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Pronóstico , Biomarcadores , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/complicaciones , Fosfopiruvato Hidratasa/uso terapéutico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiología
19.
Plant Dis ; 107(10): 3085-3095, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37079013

RESUMEN

Identifying novel loci of yield-related traits and resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) in wheat will help in breeding wheat that can meet projected demands in diverse environmental and agricultural practices. We performed a genome-wide association study with 24,767 single nucleotide polymorphisms (SNPs) in 180 wheat accessions that originated in 16 Asian or European countries between latitudes 30°N and 45°N. We detected seven accessions with desirable yield-related traits and 42 accessions that showed stable, high degrees of stripe rust resistance in multienvironment field assessments. A marker-trait association analysis of yield-related traits detected 18 quantitative trait loci (QTLs) in at least two test environments and two QTLs related to stripe rust resistance in at least three test environments. Five of these QTLs were identified as potentially novel QTLs by comparing their physical locations with those of known QTLs in the Chinese Spring (CS) reference genome RefSeq v1.1 published by the International Wheat Genome Sequencing Consortium; two were for spike length, one was for grain number per spike, one was for spike number, and one was for stripe rust resistance at the adult plant stage. We also identified 14 candidate genes associated with the five novel QTLs. These QTLs and candidate genes will provide breeders with new germplasm and can be used to conduct marker-assisted selection in breeding wheat with improved yield and stripe rust resistance.


Asunto(s)
Basidiomycota , Estudio de Asociación del Genoma Completo , Triticum/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Basidiomycota/genética
20.
BMC Genomics ; 23(1): 309, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436853

RESUMEN

BACKGROUND: Psathyrostachys huashanica Keng has long been used as a genetic resource for improving wheat cultivar because of its genes mediating the resistance to various diseases (stripe rust, leaf rust, take-all, and powdery mildew) as well as its desirable agronomic traits. However, a high-resolution fluorescence in situ hybridization (FISH) karyotype of P. huashanica remains unavailable. RESULTS: To develop chromosome-specific FISH markers for P. huashanica, repetitive sequences, including pSc119.2, pTa535, pTa713, pAs1, (AAC)5, (CTT)12, pSc200, pTa71A-2, and Oligo-44 were used for a FISH analysis. The results indicated that the combination of pSc200, pTa71A-2 and Oligo-44 probes can clearly identify all Ns genomic chromosomes in the two P. huashanica germplasms. The homoeologous relationships between individual P. huashanica chromosomes and common wheat chromosomes were clarified by FISH painting. Marker validation analyses revealed that the combination of pSc200, pTa71A-2, and Oligo-44 for a FISH analysis can distinguish the P. huashanica Ns-genome chromosomes from wheat chromosomes, as well as all chromosomes (except 4Ns) from the chromosomes of diploid wheat relatives carrying St, E, V, I, P and R genomes. Additionally, the probes were applicable for discriminating between the P. huashanica Ns-genome chromosomes in all homologous groups and the corresponding chromosomes in Psathyrostachys juncea and most Leymus species containing the Ns genome. Furthermore, six wheat-P. huashanica chromosome addition lines (i.e., 2Ns, 3Ns, 4Ns, 7Ns chromosomes and chromosomal segments) were characterized using the newly developed FISH markers. Thus, these probes can rapidly and precisely detect P. huashanica alien chromosomes in the wheat background. CONCLUSIONS: The FISH karyotype established in this study lays a solid foundation for the efficient identification of P. huashanica chromosomes in wheat genetic improvement programs.


Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA